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ABSTRACT
This paper presents our work on an experimental system for visualization of the light load. The light load is
thought as the total amount of light radiation received by all areas of the solved environment. The emphasis of
the presented system is on outdoor architectural scenes, but indoor scenes are handled as well. The aim of the
designed system is to visualize the light load either in one moment or integrated during a longer time period. We
have selected the hierarchical Monte Carlo radiosity method to solve the specified problem. This method was
enriched by parallel light sources and specular reflections to face the specific aspects of the problem. New
“lighting” iteration was added to computation phase to consider natural light sources such as Sun and sky. The
system was implemented in Java programming language using the Java3D API. Thanks to this implementation
environment our system is flexible, easy to modify and extend and it is suitable for experimental and educational
purposes.

Keywords
Computer graphics, global illumination, radiosity, ray tracing, Monte Carlo techniques.

1. INTRODUCTION
The aim of our work was to develop
an experimental system for physically accurate global
light propagation simulation and visualization of the
light load mainly of outdoor architectural scenes.
Light load is thought as the amount of light radiation
received by the areas of the solved environment. The
input of the system is a 3D model of a real scene and
definitions of light sources (their position, intensity
etc.). The emphasis is given on obtaining view-
independent solution that visualizes the light load, in
the form of a 3D scene suitable for presentation pur-
poses. The essential parameters of the system are
flexibility, simplicity, easy modification and exten-
sion and possibility to use it also for educational pur-
poses.

Light conditions are necessary to take into account
not only for light load of the facades of the buildings
but also for safety reasons and creating a pleasant
environment for habitants or employees residing in
these buildings. As an example of an application (see
Figures 1 and 9) we can mention an existing street
where an old building made of wood and bricks is
replaced with a new one made mainly of very reflec-
tive materials like glass, chrome etc. This new build-
ing affects the others buildings in the street by light
reflections and thus light conditions in the street
alone. We would like to know how many areas in the
street are affected by the light reflected by the new
building during the whole day or in some particular
moment.

2. PREVIOUS WORK
Existing software for physically accurate solution of
global illumination problems is typically hard to work
with. It requires a lot of knowledge of the problem, it
is usually very complex, expensive and it is intended
mainly for indoor scenes. Majority of this software
make only 2D pictures or animations and does not
produce the output in the 3D scene format where we
can investigate the situation more in detail, from dif-
ferent viewpoints.
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We survey the most popular software packages for
solution of global illumination problems:

Radiance Synthetic Imaging System [Lar98a] is a ray
tracing software package that enables accurate and
physically valid lighting and daylight simulations.
Radiance is based on the stochastic backward ray-
tracing algorithm and it has rather complicated com-
mand line based control. The Desktop Radiance is a
graphical user interface for Radiance system which
runs under the Windows operating system from
within AutoCAD system using pull-down menus.

Integra Inspirer [Int02a] is a complex commercial
package for architectural lighting design. It uses bi-
directional ray tracing algorithm to analyse light
propagation in a scene and to compute illuminance
distribution. Ray tracing in Inspirer is accelerated by
uniform space subdivision.

AutoDesk Lightscape [Aut02a] is another commercial
package using both radiosity and ray tracing compu-
tation. The radiosity solution is obtained by the pro-
gressive refinement approach. After the radiosity cal-
culation has been done the ray tracing can be per-
formed for a given view to add specular reflections
and transparency effects.

RenderPark [Bek00a] is a test-bed system for physi-
cally based photo-realistic image synthesis. It is a free
software package providing a solid implementation of
a wide variety of state-of-the-art ray-tracing and ra-
diosity algorithms (stochastic ray tracing, bi-
directional path tracing, Galerkin radiosity, photon
maps, stochastic Jacobi radiosity, and various random
walk radiosity algorithms). Using a common source
code base allows to compare global illumination al-
gorithms on a fair basis, and to evaluate their benefits
and shortcomings.

For experimental and educational purposes we need a
relatively simple, transparent and flexible system that
is easy to maintain, modify and extend. The systems
mentioned above are either too expensive or very
complex and hard to work with or both. Even the
open-source candidates (Radiance, RenderPark) are
not suitable to experiment with, expand or modify for
relatively inexperienced people. They are also pri-
marily dedicated to produce realistic pictures of illu-
minated indoor scenes and majority of them is not
able to produce 3D output or to visualize light load
during some longer time period. This led us to devel-
opment of our own system that is based on Java3D
paradigm and so it lets the user to concentrate solely
on solving the light distribution in a scene.

3. METHODS FOR SOLVING THE
LIGHT DISTRIBUTION IN A SCENE
Physically accurate global light propagation simula-
tion requires solving the rendering equation
[Kaj86a]. A solution may be obtained by the means
of two principal approaches. The first one could be
classified as the group of ray tracing based methods,
the second one is the group of finite element methods
solving the rendering equation on a finite element
mesh for purely diffuse scenes.

Ray tracing based methods
Basic ray tracing [Whi80a] is a point-sampling tech-
nique. It cares about rays of the light that enter the
observer’s eye which are traced in backward direc-
tion. Ray tracing based methods excel when comput-
ing scenes with point light sources, direct illumina-
tion, specular reflections and refraction through
transparent materials. They typically give the result in
the view-dependent 2D form and are relatively mem-
ory efficient. Nowadays ray tracing variants based on
Monte Carlo sampling seem to be more perspective
and more popular than the radiosity methods. How-
ever, ray tracing based methods have difficulties
computing scenes with predominating area light
sources or scenes with strong diffuse reflection,
which is crucial for us.

Finite element methods
Typical representative of this group is the radiosity
method. Classical radiosity methods produce a view-
independent 3D solution — rather then computing
pixel values on the screen, these methods calculate
intensities for patches in a 3D environment. The
original surfaces are divided into a mesh of smaller
elements. The final radiosity values are stored for
each element of the mesh. The main drawback of
classical radiosity methods is their diffuse orientation
– all objects in the scene are treated as Lambertian
reflectors [Coh93a]. The memory consumption of
these methods is higher owing to refined 3D mesh.

Initial approach to solving a system of radiosity
equations stored a full matrix describing the system
of linear equations [Coh93a]. It was very slow and
complex pre-processing had to be performed. The
next approaches like progressive refinement
[Coh88a] are faster and they eliminate difficult and
time-consuming pre-processing. The hierarchical
radiosity [Han91a] is besides the wavelet radiosity
[Gor93a] probably the most popular deterministic
radiosity approach. Both methods create a hierarchy
of elements and the fine initial tessellation of the in-
put scene is not necessary.



Recently developed methods
Contemporary approaches (based either on stochastic
radiosity [Gra01a] or on photon mapping [Jen02a]) to
global light simulation join positive qualities of the
methods of both mentioned groups, because random
walk methods and finite element methods are in many
ways complementary approaches. Stochastic princi-
ples and computation with iterations are also very
often involved in the methods of both groups.

4. SOLUTION
The basic observation is that the light load is view
independent. This implies that we can get the solution
in the form of a static 3D scene.

Selection of the method
Our goal is to obtain a visualization in the form of a
3D scene and therefore we select solution from finite
element methods group. Architectural scenes contain
indeed many flat surfaces that can be approximated
by diffuse patches. Such scenes could be solved in an
exact way with the radiosity method. However, it is
necessary to represent also specular reflections and
non-diffuse light sources which are not possible to
neglect. The selected method should be scalable
enough and should be extendable for necessary phe-
nomena for our purposes. We believe that the hierar-
chical radiosity based on stochastic Jacobi iterative
method [Bek99a] meets best these requirements.

Hierarchical Monte Carlo radiosity
Hierarchical Monte Carlo radiosity is the conjunction
of two popular approaches in the radiosity calculation
– hierarchical radiosity and stochastic computation.
The goal is to combine advantageous properties of
the both methods. Hierarchical radiosity [Han91a]
contributes with automatic adaptive subdivision of

surfaces and with strong reduction of form factors
that we are forced to evaluate and store in the mem-
ory. On the other hand - unfavourable is the sensitiv-
ity of this method to the error in the computation of
the form factors that can lead to incorrect or even to
forgotten energetic transfers. Monte Carlo radiosity
methods excel with low memory requirements, be-
cause it is not necessary to explicitly evaluate and
store the form factors. Compared to the hierarchical
radiosity the stochastic methods can achieve higher
stability of the computation and lower sensitivity to
the error of missing or badly computed occlusion.
The usual drawback of stochastic methods is the high
frequency noise. As the stochastic part of the method
we selected the stochastic Jacobi iterative method
[Bek99a]. According to the author, this method is a
good candidate to be used in practice, because the
computational cost is related to the number of sam-
ples that need to be shot, rather than to the number of
patches in the scene.

The hierarchical Monte Carlo radiosity method offers
some advantageous features for computation of out-
door scenes: it can be relatively easily enriched of
parallel light sources and specular reflections and the
quality of the output scene could be easily controlled.
However, properties of the whole system are affected
by the choice of the computation method. Thus the
input scene should be tessellated (divided into
patches of finite area) – which is partially done by the
hierarchical subdivision. All patches of the scene are
Lambertian (diffuse) reflectors and media are not
participated (outer environment is vacuum).

Figure 1. Light conditions in an outdoor architectural scene.
The Sun and the sky are essential light sources. Diffuse reflections

are prevalent, but specular reflections are not negligible.
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Extensions to the hierarchical Monte
Carlo method
Specular Reflections
Smooth surfaces reflect the incoming light in a single
direction – at an angle equal to the incident angle at
which they arrive to the surface. A typical example of
perfectly specular surface is a mirror (see Fig. 2).
Specular surfaces like glass, chrome, metals etc. are
very usual in architectural scenes and therefore it is
necessary to extend diffuse-only method to solve
specular reflections correctly.

Every object in our scene has its own specular reflec-
tion coefficient ρS. For each light ray crossing an ob-
ject with ρS≠0 the recursive ray tracing is performed.
The ray tracing finishes when the ray reaches a sur-
face ρS=0 or when the depth of recursion is equal to
the predefined fixed value. This pre-processing is
performed only once in our system — during a
“lighting” iteration (described below).

Parallel Light Sources
Our extension that includes parallel light sources is
necessary to allow the user to model non-diffuse light
sources and also very distant light sources. This ex-
tension is straightforward and unpretentious: the
computation for the patch AP of a parallel light source
is similar to the computation of a patch AD of a dif-
fuse light source, the difference is in sampling the ray
leaving the patch. In the case of patch AP the origin of
the ray is uniformly sampled as in the case AD, but its
direction is equal to the normal of the patch AP.

Lighting Iteration
There are two aspects of the sky and Sun - first they
can form a background for outdoor scenes. In interior
environments we can also look out through windows
and other outlets. This aspect of exterior is necessary
to make realistic-looking pictures, but it does not
affect the light load. Therefore it is not considered in
our system. The second case is the use of the sky and
Sun to illuminate the scene. Sun and sky characteris-
tics differ a lot from other synthetic light sources so
they are treated separately in our system. For com-

putation of effect of Sun and sky we inserted new
lighting, initial iteration into the iterative process.

During the lighting iteration all parallel light sources
in the input scene are considered. Within the compu-
tation there are different thresholds and other com-
putational parameters involved and the oracle func-
tion (see [Coh93a] for explanation) also differs from
the one used in other iterations. Thanks to this it is
possible to set special behaviour of the algorithm to
the Sun or sky patches. For example the distance of
affected patches is not considered in the lighting ora-
cle function and the division parameter FLε used dur-
ing the lighting iteration has the different value than
parameter Fε. Hierarchical subdivision of patches is
performed only for objects of the scene and not for
light sources during the lighting iteration. It is not
necessary to subdivide patches of global light
sources.

After all the energy of the global light sources has
been shot out the gathered energy on the patches is
treated as the self-emission Φ of the patch. During the
next iteration the Sun or the sky are no-longer con-
sidered. The effect of these light sources has been
incorporated into the self-emission of patches in the
scene and diffuse reflections of the global light
sources are neglected. A similar approach in context
of progressive radiosity and pure hierarchical refine-
ment is described by Müller and colleagues [Mul95a]
and Daubert et al. [Dau97a], respectively.

Approximation of the Sun’s path
Integral part of our solution is investigation of the
influence of the sun trajectory on the light load in the
given scene configuration. The Sun’s relative position
to the place on Earth changes during the day. The
form of sun trajectory is also dependent on the season
of the year and latitude and longitude on Earth.

In the case of Sun’s path approximation the result is
obtained in the form of J/m2. Thanks to this we can
visualize the light load during some time interval for
example during the whole day.

Visualization
One of the most common and important tasks for a
lighting designer is to determine the luminance levels
of the space that is being designed or measured. Thus
the primary goal is the visualization of the light load.
Output scene rendered in colours based on wave-
length of light reflecting off the surfaces does not
permit to obtain a good idea of the light load. Even if
this form of output is possible in our system, much
better insight can be obtained by visualization in so
called false colours. False colour means that instead
of displaying surfaces of the scene in real colours we
display them in colour that corresponds to the level of

Figure 2. Specular reflection
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irradiance (W/m2) or light load (J/m2) in the case of
longer time period visualization. Visualization is per-
formed in the 3D space so we do not obtain only 2D
picture, but the lighting in the 3D scene. This scene
can be saved in the VRML [ISO97a] format and can
be used to investigate the results, perform walk-
throughs where single parts of the scene can be in-
vestigated.

5. IMPLEMENTATION
Our experimental system was implemented in the
Java programming language using the standardised
Java3D application programming interface (API).
This makes the system portable to various hardware
platforms and easy to modify.

Java3D
Java3D is the interface for writing applications or
applets that display or interact with three-dimensional
graphics. Besides 3D graphics constructs it offers
mathematical classes for vector calculations, con-
structs for manipulation with sounds etc.

Scene Graph
All Java3D programs are based on the Scene Graph
data structure. Scene Graph is the tree data structure
that describes entire scene (see Fig. 3). It consists of
two main branches – a viewing branch and a content
branch. Both branches are composed by instances of
various Java3D objects. The content branch cares
about geometry, appearance, behaviour and so on,
while the viewing branch is intended to set up and
change the viewing parameters. As the content branch
can get very complex it can be automatically com-
piled into an optimised internal format. The Scene
Graph is traversed by the Java3D renderer that

chooses the traversal order – it is not restricted to
left-to-right or top-to-bottom – to display it.

Data structure of our System
While loading an input 3D scene the scene graph is
constructed. It consist predominantly of Shape3D
objects representing shapes formed by triangle
patches. As we need to store the hierarchy of ele-
ments that grows in consequence of subdivision dur-
ing computation, we place it as a user data directly to
Shape3D objects, see Fig. 5. Collections shapes and
leafs enable fast direct access to Shape3D objects and
leaf elements respectively.

Acceleration of the Java3D Ray Casting
As with any other computation method that is based
on ray casting, the speed of a ray-primitive intersec-
tion test has an important influence on the overall
speed of an implementation. Unfortunately, Java3D

Figure 3. Scene Graph structure
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API was designed with hardware-assisted rendering
in mind and native methods for ray-object intersec-
tions are quite inefficient. Original ray casting per-
formed via object picking is actually very slow. In the
absence of a decent object space subdivision scheme
(regular grid, kd-tree [Hav00a]), the main potential of
improving the performance of ray-primitive intersec-
tion tests lays in writing custom intersection routines
for every primitive. As our system is limited to using
triangle patches, this boils down to writing an opti-
mised ray-triangle intersection routine, such as for
example the one proposed by Badouel [Gla90a]. As
we are using Java where frequent memory allocation
is very expensive, we also have to keep the time-
critical sections free of object instantiation and allo-
cation.

In the search for the fastest possible intersection
mechanism, we have first replaced the original ray-
picking tests by open-source routines for ray-triangle
intersection available from org.j3d group [J3d02a],
which brought us a decent speedup. However, ray
intersection routines in org.j3d package need to re-
compute many object parameters from scratch, which
still brings some performance penalty.

The final improvement was computing the ray inter-
section directly on our data structures used for top-
level patches using a variant of Badouel’s algorithm
[Gla90a], where all important constants used within
the intersection test have been precomputed. In com-
parison with original Java3D implementation, we
have achieved an average speedup of 2.2. See Fig. 4
for relative comparison of the three tested intersec-
tion methods.

6. RESULTS
We have verified proper operation of our experi-
mental system on a set of test scenes including well-
known Global illumination test scenes [Smi00a]. Fig-
ure 7 shows results of two of these scenes.

In order to compare whether the convergence of the
implemented method corresponds to the expected
convergence rate of stochastic Jacobi relaxation we
carried out several measurements on various scenes.
These scenes included simple indoor scenes similar
to the tests scenes mentioned above and also outdoor
scenes such as the one on the Figure 9.

The resulting graph on Figure 6 shows the magnitude
of the error (in Watts) as a function of the iteration
number. As one may see the convergence and espe-
cially variance strongly depends on the number of the
samples shot to the scene. We can see that — ac-
cording to our expectation — the error is decreasing
with O(1/Nk).
Figure 8 demonstrates the capability of the system to
account for specular reflections in outdoor scenes.
The right image on Figure 8 shows how our system
handles the computation of light load for a sun-lit
scene where the sun moves over the sky for approxi-
mately one hour. One can see that the illumination
during this rather short time period did not com-
pletely wash out the borders between reflections on
the street.

Figure 5. Data structure of the system
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7. CONCLUSIONS AND FUTURE
WORK
In this paper we presented an experimental system for
visualization of the light load. To face the specific
aspects of this task we made several extensions to the
hierarchical stochastic radiosity method. The hierar-
chical Monte Carlo radiosity method was enriched by
treating parallel light sources and by specular reflec-
tions. New “lighting” iteration was added to compu-
tation phase to consider natural light sources such as
the Sun and the sky. The system was implemented in
Java programming language using the Java3D API.

The selection of the computation method gives some
specific characteristics to our application: the result
obtained is a view-independent representation of the
whole 3D scene and thus it is not necessary to com-
pute many 2D views to the scene. The result is saved
in the VRML format and is suitable to use it for pres-
entation and inspection purposes (interactive walk-
through) and is also acceptable for the web environ-
ment. The finite element representation of the scene
reduces usual high-frequency noise of stochastic
methods in environments with prevalent diffuse re-
flection.

Possible extensions of the system are: output of the
animation of light proportions during the day, further
speeding-up of the computation process by some
spatial subdivision method, clustering, implementa-
tion of the discontinuity meshing, participation of the
media. The system will be extended to calculate
thermal load of the buildings and to take into account
other effects influencing the habitant’s environment
and their feelings.
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Figure 7. Global Illumination Test Scenes.
Left image shows scene “Emission”, right image shows scene “Shadow”. Both were computed

with total amount of approximately 106 rays per iteration and exhibit high frequency noise.

Figure 9. Visualization of the light load in a street. On the left image we can see
light load in an original street, the right image shows light load in this street after replacing

an old building on the right side by the new one made of more reflective materials.

Figure 8. Light load for two simple architectural scenes. On the left we can see results
for a single light source, the right image shows a cumulative result for 1 hour during a sunny day.


