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ABSTRACT

In this work we simulate the e ect of the human eye's maladaptation to visual perception over time through a
supra{threshold contrast perception model that comprises adaptation mechanisms.Speci cally, we attempt to
visualize maladapted vision on a display device. Given the scene luminance, the model cpotes a measure of
perceived multi{scale contrast by taking into account spatially and temporally v arying contrast sensitivity in a
maladapted state, which is then processed by the inverse model and mapped to a desirdisplay's luminance
assuming perfect adaptation. Our system simulates the e ect of maladaptation locly, and models the shifting of
peak spatial frequency sensitivity in maladapted vision in addition to the uniform decrease in contrast sensitivity
among all frequencies. Through our GPU implementation we demonstrate the visibity loss of scene details due
to maladaptation over time at an interactive speed.

Keywords: maladaptation, visual perception, contrast processing, human vision, tempaal adaptation, high
dynamic range

1. INTRODUCTION

It is consciously experienced by everyone that intense changes in illumination tempally cause a loss in visual
sensitivity that is later recovered over a time period. In fact, considering the hghly variant and temporally
changing real world illumination, the human visual system (HVS) is virtually never fully adapted in practice.
Due to this maladaptation, the visibility of some scene regions are reduced which would otherwise be perféct
visible if the HVS was fully adapted.

The temporal loss of visibility can often be tolerated in daily life, since a large fraction of sensitivity is
recovered relatively fast in just a few seconds through neural mechanisms, and moseal world objects are
purposely designed to be strongly visible. However, some tasks require quidleaction times and undiverted
attention. For those the rate of adaptation may not be su cient. For insta nce, a car driver entering a forest
highway after driving against the sun can be temporarily blinded for a short anount of time jeopardizing safety.
In fact, computational methods have been proposed to determine the magnitude of vehiclg@isplay visibility under
dynamic lighting conditions'? enabling the validation of vehicle ergonomics and safety at design time. A more
extreme case are ghter pilots who are exposed to much more drastic illumingon changes, but regardless need
to maintain near instant reaction capability at all times. On the other hand, the quickly recovered sensitivity
may not be su cient in environments containing low contrast objects. As an example, people often struggle
to nd their seats if they enter a movie theatre after the session started, while duing the course of the movie
the obstacles in the room become gradually visible due to the additional sensitity recovery through the slower
adaptation mechanisms based on chemical processes.

The aforementioned examples can benet greatly from faithfully simulating the e ect of maladaptation on
visibility. Such a model should predict the visibility magnitude of both near{ and supra{threshold scene details.
Recent luminance based modef® tend to explicitly focus on modeling maladaptation while ignoring other
HVS aspects such as contrast sensitivity and visual masking. The modelingfdahe latter mechanism® requires a
contrast based approach involving a transducer function. Current contrast doman frameworks, however, often
do not account for luminance adaptation and contrast sensitivity, as well as theoverall sensitivity loss and shift
in peak sensitivity due to maladaptation.
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An important consequence of maladaptation is the locality of resulting visbility loss in a scene. For instance,
looking outside the window in a dark room on a sunny day, one will eventually adat to the bright illumination
outdoors and start seeing objects clearly. If at that instance the gaze is directedawards the interior, the observer
will not be able to discriminate objects that are visually less apparent. Ttus, at any given time details in some
scene regions are less visible than others, as dictated by the current level of malaptation. The problem is
that it is often not possible to predict the direction the gaze will be shifted towards, and thus the illumination
levels that will be observed in the next timestep. Similar to real{world scenes, he emerging HDR displaying
technology coupled with the ever increasing size of display devices is also prone to sudtal losses of visibility.
From an application perspective it is bene cial to simulate how the entire scene wuld look like under current
adaptation conditions, which is not possible using current methods relying on a sigle adaptation level for the
entire scene.

We present a system that renders a series of images of a scene as it would be seen byadacapted eye over
time. Each separate image corresponds to the visual perception of the scene at ine step while the sensitivity
is recovered. The time course of adaptation is modeled by considering both neural meahiams and pigment
bleaching and regeneration. Our framework operates in contrast multi{scale doma and models supra{threshold
e ects like visual masking, while also accounting for contrast sensitiviy and luminance (mal)adaptation usually
considered only in luminance domain frameworks. We also model the shifting of p&afrequency sensitivity in
maladapted vision, which has not been considered by previous models. In the rest of theaper we rst discuss
related work (Section 2), followed by a new model for simulation of human méadaptation in contrast domain
(Section 3). Next, we present, analyze and discuss the results of our system (Sectid) and nally we conclude
and suggest ideas for future research (Section 5).

2. BACKGROUND

Previous models of time-course adaptation often operate on luminance and are nable to simulate visual
phenomena locally. In this work, our goal is to simulate local maladaptatio in contrast domain to account for
supra{threshold mechanisms of vision as well as near{threshold. There were a fewatdlorate models of contrast
perception proposed in history, but a vast majority of those were not concerned wth the simulation of the

time{course of maladaptation.

Ferwerda et al.” presented a computational model of visual adaptation. Their model captures the changes in
threshold visibility, color appearance, visual acuity, and sensitivity over time using Ward's scaling tone mapping
approach® Ward's mapping is enriched by an o set parameter that is a function of time. The visual acuity is
approximated by removing higher frequencies according to Schaler's measurements. Thisa simplistic approach
because human sensitivity to contrast also decreases for lower frequencies. A photoeptor-based global time{
dependent tone mapping method presented by Pattanaik et af is built on parts of an advanced Hunt's model of
color vision.? By means of the adaptation model the method accounts for time dependency of retinal adaptan
mechanisms for both cones and rods. However, as this adaptation model and the mettidtself are global they
can simulate neither local adaptation mechanisms nor human contrast sensitiwy. Irawan et al.® devised a model
of low vision that is able to simulate the performance of an impaired or ged human visual system. The model
is based on the combination of histogram adjustment® and Pattanaik et al.'s* global tone mapping methods.
Due to the maladapted threshold-versus-intensity function (via), it can mimic the viewer's changing adaptation.
The method is able to simulate the e ect of maladaptation, but only at the threshold level and only globally for
the whole image. However we are also interested in the supra{threshold e ects ahaladaptation in addition to
visual perception around the threshold level.

Pattanaik et al.® proposed an advanced multiscale model of adaptation and spatial vision. As thenodel
is based on spatial decomposition it can predict spatial contrast sensitivig behavior. The authors proposed
gain functions that should be valid both for near{ and supra{threshold luminance levels. However, the model
does not comprise the time course of adaptation and is therefore unable to simulate ects of maladaptation.
More recently, Mantiuk et al.** proposed a multiscale framework for perceptual processing of contrast. The
method simulates supra{threshold perception (compression) of contrasts on muiple scales using transducer
functions. However, contrasts still need to be compressed in a response space amd gnother and more arti cial
compression is accomplished by the optimizer due to its weighting coe cients. The ouput of the optimization



problem solver is therefore hard to calibrate for the correct reproduction of luminance perception. Moreover, the
method in fact does not simulate human adaptation.

HVS models involving maladaptation have been also been proposed in the conterf detecting the visibility
loss on display devices due to dynamically changing illuminationt? While in this work temporal maladaptation is
modeled in the contrast domain, they consider global adaptation and only output a \visibility map" that depicts
distortions in the image structure similar to image quality assessmenmetrics, instead of rendering images of
the scene appearance in a maladapted state. Furthermore, they don't model the change in sj@ frequency
sensitivity due to maladaptation, which we discuss in detail in Section 3.2.

2.1 Human Contrast Sensitivity in Maladapted State

Vision literature concerning the modeling human spatial contrast sensitivity in an adapted stateusually through
a contrast sensitivity function (CSF) is rich.*®> Much work has also been done otemporal contrast sensitivity,#
i.e. the sensitivity of HVS to the spatial frequencies over time, as this (and saalled critical icker frequency) was
crucial in the design of rst CRT display devices. However, measurements of CSF in madapted states are hardly
that obvious, perhaps due to the complicated testing and evaluation process. Malagaed luminance intensity
thresholds are measured only for simple stimuli without any variation of gatial frequency.'®> Consequently, in
the rest of this section we discuss ndings on the shape of CSF in maladapted conditions
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Figure 1. Measurements of maladapted contrast sensitivity. Left: the shape of CSF for steady (adapted) state and for
briey pulsed (maladapted) stimulus, adapted from ', right: amplitude sensitivity functions during dark adaptation,
adapted from 7 (the right image shows the amplitude sensitivity functions (ASF) ; one can obtain CSF from ASF by
multiplying with the background luminance).

The encoding of contrast within the human visual system is thought to be mediatedby two processing
streams: the magnocellular (M) and parvocellular (P) pathways!® To investigate the e ect of the pathways,
Lenova et al!® and Alexander et al'® measured contrast sensitivity using two di erent paradigms. In the
steady{pedestal paradigm, they brie y presented a test stimulus against a continuou presented adaptation
eld. In the pulsed{pedestal paradigm, the test stimulus was presented simultaneously \ith the adapting eld.
The steady{pedestal paradigm favors the M pathway, while the pulsed{pedestal pardigm favors the P pathway.
The measured mean contrast sensitivity function for control subjects for stedy{pedestal has a low{pass shape,
while for the pulsed{pedestal it has a band{pass shape, see Fig. 1 (left).

On the other hand, Hahn et al.}” found the CSF to be invariant in shape during dark adaptation. Di erently
from Leonova et al’® who presented stimuli only briey to observers during experimentation, Hahn et al.
measured a longer time course of dark adaptation ranging from seconds to hundreds oéconds, see Fig. 1
(right). This suggests that the transition from original to destinatio n stimuli is very fast in terms of sensitivity
to spatial frequencies (as modulated by P pathway), but much slower in terms of werall sensitivity to contrast.
In other words, the shift in frequency sensitivity happens almost instantly and is retained during the time course
of adaptation to the destination stimulus.

In our method, we use Daly's CSE%?! and we were tempted to simulate the aforementioned transition
behavior by using current adaptation luminance as input parameter L, of the maladapted observer. This



approach, combined with the use ofmaladaptation ratio resulted in reasonable time course shape of the CSF.
(The maladaptation ratio is approximated as cvi(Lp)=cvia(Lp; La); where cvi and cvia are the contrast versus
intensity functions for adapted and maladapted eye, respectivelyl , is the current adaptation luminance, and L

is the current background luminance'?). However, this method implies the assumption that the spatial frequency
sensitivity characteristics of the HVS remains constant in maladapted staes, since the CSF we use was measured
for the adapted eye. We can neither calibrate nor justify this approach as we were noable to nd a su cient
amount of maladapted CSF experimental measurement data.

Therefore, in our model we incorporate the shift in frequency sensitivity due to mahdaptation to the mal-
adaptation ratio approach. Following an abrupt illumination change, we instantly modify the shape of the CSF
to re ect the spatial frequency sensitivity in the target state, and then increase the nsitivities globally using the
maladaptation ratio over the time course of adaptation. Our method is supported by experimental evidence: the
sensitivity after sudden illumination change drops down drastically and when it is (at least partially) regenerated
the curve already has the invariant shape of the target (compare Fig. 1 righwith Fig. 5 right).

3. SIMULATION OF VISUAL MALADAPTATION

The data ow of the proposed model for human contrast perception in maladapted séates is illustrated in Fig. 2
for the steady{state. We assume that the input HDR image is calibrated in cd=m? units. First, we construct
background luminance and local adaptation maps Lp; L 5), which are used both for contrast processing and nal
display purposes. The adaptation map is modi ed over time to model the temporaladaptation. Simultaneously,
we decompose the input image into the contrast representation €) using the Laplacian pyramid.?> We then
process physical contrast by a model ofnaladapted scene observedlepending on sensitivity to spatial frequencies
as well as on the current adaptation state to get the perceptual contrast respores (R). The response values are
transformed by inverseadapted display observemodel to obtain physical display contrast. All contrast processing
steps are performed on multiple scales simultaneously. Consecutively, the physil contrast is converted to display
luminance map (L4) and colors are processedl{,). Finally, the inverse display model produces the output
code values [ ) that are shown on the display device.
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Figure 2. Flow chart of the proposed method. See text for details.

3.1 Adaptation Map

The adaptation map L, represents the actual state of local adaptation of the observer. The constructiorof the

local adaptation map is based on the actualbackground luminance mapLy and on the previous course of local
adaptation (see Section 3.4 for the details on temporal adaptation). Backgpund luminance Ly, is the actual

stimulus of an observer and is calculated for each input frame as the blurred imagef input luminance (as the

contrast sensitivity function was measured for foveated vision we blur the iminance conformably to one visual
degree (1)*°). To accomplish this we use the Gaussian lter with the kernel sizeK = %tan(ﬁ); where p is

the pixel size (in meters) andd is the observer's distance from the display (in meters).

Similarly to Irawan et al. > we model the adaptation due to human rods and cones separately. To obtain a
single response value, Hunt [9, Sec. 31.8.2] proposed to sum the achromaticneoand rod responses up. The
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Figure 3. Visual illustration of the local adaptation processing. Temporal behavior is modeled for rod L, and cone
L .. adaptations separately, which are computed from adaptation maps ( be; cc; nc; br; o, nr) that model various
adaptation mechanisms. These adaptation maps are updated at each timestep wsing the current background luminance

map L. In maladaptation computation (see Sec. 3.2), a compound adaptation map L, is obtained by adding adaptation
maps for rods and cones. HDR image courtesy of Paul Debevec.

current adaptation luminance L, is therefore obtained (as also illustrated in Fig. 3) as a sum of conel(,)
and rod (L, ) adaptations: L, = L.+ Ly;whereL,. = e e« nca@ndlL, = o no: Factor p
accounts for the photopigment bleaching and regeneration (Lp) = 1=p(Lp); where p(L) = 1o=(lo + L) and
lo = 10* cd=m?: To model neural adaptation mechanismswe calculate ,, (fast neural adaptation) and . (slow
neural adaptation) for rods and cones using the equations proposed by Irawan et &l. Note however that our
implementation of human adaptation is local (i.e., we have the adaptationmap) and all of the factors mentioned

above Lae; ber ce neilars bri e nr) are not single values, but complete maps spanning the whole image.

For the subsequent processing (CSF lItering,cvi; cvia functions), we need to convert the adaptation valued..
scaled in hypothetical perceptual adaptationunits back into the physical units. In other words, we are searching
for an adaptation map L, in physical luminance units that would evoke the actual maladapted stateL , in the
observer's visual system. To do this, we numerically invert the functionL, and setL, = L, (L (LaciLlar)):

Note that for the fully adapted observer this results in L, = Ly as expected, but for the maladapted observer,
the behavior of this function is more complex (see Section 3.4).

Figure 4. Comparison of the e ect of global and local adaptation. Left: global adaptat ion (using global values L .y and
Lug), right: local adaptation (using local Ly, and global Lag). Notice that local background luminance map allows to
simulate di erent sensitivity to spatial contrasts according to var ying illumination in the scene.

For experimental visual analysis and illustration purposes we allow theuse of the global adaptation value
Loy instead of the local adaptation map. We can calculate the global background lumiancel ,y as a geometric
mean of the input luminance L for each pixel: Lpg = ( "L)¥™" and similarly we obtain the global adaptation



luminance L,g. Global L,g is useful for the analysis of static images, where it would be hard to changiocal
adaptation map L, manually if a refence HDR image depicting the adaptation state is not present. Nt that
in the rest of the gures the background luminance (L) is still local even in global adaptation (L,g) case (see
Fig. 4-right), with the exception of Fig. 4-left where we illustrate global adaptation L ,g with global background
Lug luminance for comparison.

3.2 Maladapted Spatial Sensitivity to Contrast

To account for sensitivity to spatial frequencies, we utilize the contrast sengivity function (CSF) proposed by
Daly.2%21 The corresponding spatial frequency (in c=deg) for each level (starting from 1) of Laplacian pyramid
is obtained as = K=2(' D: The size of the image (inX Y pixels) in visual degrees isi> = max(X;Y )=K:
Given spatial frequency in c=deg observer distanced in meters, image sizei? in visual degrees, and current
background luminance levelLy (in cd=m?), and neglecting orientation and eccentricity we can calculate the
sensitivity S, for contrast magnitudes C (in Weber's units) for each pixel at each levell of pyramid:

Sa = CSF(; ;L w;i%d;C); 1)

where the coarser background luminance map 41 is a downsampled from the ner scale maplLy. We account
for maladaptation by computing the maladaptation fraction as given in:*?

cvi(Lpi)

S =Sy —m——;
m ® cvia(Lp; Lar)

(2)
where Sy is the sensitivity in the maladapted state, S, is the sensitivity at the fully adapted state, Ly, is the
current background luminance andL 5 is the current adaptation luminance. The subscript | indicates the scale
of each map.

Figure 5. Simulation of time-course of contrast sensitivity for a maladapt ed observer. Left: transition from dark to bright,
Right: transition from bright to dark environments (dark adaptation).

Fig. 5 shows the change in shape of CSF between two adapted states. In the left age, a subject is adapted
to a dark environment. Accordingly, her sensitivity to contrast is low and shifted to low spatial frequencies (blue
curve). After the exposition to a bright environment, the sensitivity rapidl y shifts towards higher frequencies
(arrow 1), but due to the maladaptation (as one is blinded by strong light for some time) the sensitivity is still
very low (green curve). However, sensitivity is restored over time (arrow 2 to reach the nal fully adapted state
for the bright environment (red curve). The process is similar for a subject adaped to the bright environment
(red curve in Fig.5 right). First, the sensitivity drops rapidly (arrow 1), shifts to the low frequencies (green curve)
and consecutively it regenerates (arrow 2) to the nal dark{adapted state (blue curve). The described behavior
is in accord with psychophysical experiments conducted by Hahn and Geisler [17, §i 5, 6], who measured that
the CSFs are nearly identical throughout the course of dark adaptation. Naturally, the two processes di er in the
speed of the sensitivity regeneration and we describe our implementation of theemporal aspects of adaptation
below.



Figure 6. Classical Campbell-Robson contrast sensitivity chart for dark adaptation. From left to right: (1) fully adapted
state in a relatively bright environment (adaptation luminance 112 cd=m?), (2) background luminance was decreased
to 2 cd=m?, the contrast sensitivity moves to lower frequencies, but due to maladaptation, it is basically very low, (3)
sensitivity regenerates according to dark adaptation time-course, (4) nal fully adapted state (adaptation luminance 3
cd=m?). The curves show the thresholds observed from approximately 30 centimeters at original paper size.

3.3 Contrast Transduction

The visual sensitivity to a contrast patch of a certain spatial frequency decreass with the presence of other similar
frequency contrast. Daly's Visible Di erences Predictor (VDP) 2° accounts for this e ect known asvisual masking
using a threshold elevation map. This approach trades o supraf{threshold contras interval for near{threshold
precision. Such a trade{o is not suitable to our purposes, as real{world scenes arexpected to comprise contrast
well above the visibility threshold. Thus, in our model we employ the transducer function T described irf® based
on the premise that it is tuned for both near{and supra threshold precision. The contrast C at each scale is
processed separately as follows:

3291 [(1+(Sajm C)®)*™ 1] 3)
0:2599 (3:433 + Syjm C)08

where Ry jm is adapted or maladapted human perceptual response to contrasS,jm is the sensitivity at either

maladapted or fully adapted state. The constants are taken from Wilson's wok without any change. The

monotonically increasing behaviour of the transducer function enables a fast inversio through the use of a
lookup table stored in GPU memory.

Raijm = T(C; Sajmi) =

3.4 Temporal Adaptation

Temporal adaptation can be modeled through two separate exponential decay functits; one forpigment bleach-
ing and regeneration and another for neural adaptation.® For simplicity, we describe the adaptation process
generically, but recall (Sec. 3.1) that the nal adaptation map L, is combined from six values that possess
di erent time constants.

The time course of the neural adaptation mechanism from perceived luminancé, at time t = 0, to L.
(whereL. IS c¢c; nc; or; nr)is modeled as follows:

L.=L,+(Ly Lp) en : 4)

The contribution of neural adaptation to temporal recovery of visual sensitivity is modeled by updating the cvia
function at each time step using the currentL,. We sett, to 0:08 seconds for cones, and:D5 seconds for the
rods®

Pigment bleaching and regeneration (modeled by . and ), unlike neural adaptation, are slow and not
symmetric for dark and bright adaptation. Assuming that the amount of signal transmitted by receptors is
proportional to p L, the fraction of unbleached pigmentsp is computed as in Equation 5:

p= p(Lo)+(po  P(Lp)) €0 7w )

In the steady state, p(L) is 10=(Io+ L) where ¢ is 10* cd=n?. The time constant t is set to 110 and 400 seconds
for cones and rods, respectively.



3.5 Luminance and Color Processing

The inverse transducer converts maladapted contrast responseR, to the luminance valuesL,. By summing
all the levels of the Laplacian pyramid we obtain the maladapted luminance map. This map represents the
hypothetical output of the display device that would evoke the same perception ofcontrast in a fully-adapted
display observer as the original HDR scene in the maladapted observer. However, taccount also for the
luminance sensitivity, we transform L, using the S{shaped function as follows:

Lm

Lg= —
4T Ln+ L,

La=( "L)'™ 6)
where Ly is the output display luminance, L, is the luminance value we obtained from of inverse observer
model, and L, is a geometric average of the current adaptation luminance map. Note that the vlue of L,
accounts for the current (mal)adaptation state and therefore the S{shaped functia results in dark images for
dark adaptation scenario and bright images for adaptation to bright scenes, andhe sensation will improve
according to the temporal adaptation as described above.

As our aim is the simulation of maladaptation in contrast domain (and not the simulation of color vision
phenomena), we perform only very simpli ed color processing. Simply put, all the aboe described processing
happens on achromatic channel only. However, as the local adaptation map, is calculated as a combination of
the human rod and cone responsed (i ; L 5c; refer to Section 3.4) we can utilize them for color processing. In the
absence of a model of color perception specialized in maladapted HVS states, we desate the colors as follows:
lcorr = |3 (for each color channell separately) using the following saturation coe cient s = Lac=(Lac + Lar);
where L, and L, are current cone and rod adaptation map values, respectively.

3.6 Inverse Display Model

Our simple display model consists of three parameters, the maximum and minimum disply luminance, and a
gamma value which we set to ¥2:2. The gamma corrected valued ., are tted to the luminance range of the
display by a simple linear mapping. Our interface allows the user to control the dsplay luminance range, this
way a variety of display types can be approximated. For a more precise simutan of speci ¢ displays the linear
mapping can be replaced by the display response function.

4. RESULTS

In this section we discuss our results, implementation details, and the other pasble uses of the model. Please
refer to supplemental materials (ttp:/mpi-inf.mpg.de/ ~mcadik/maladaptation ) for further results.

A visual veri cation of maladapted contrast sensitivity behavior (described in Sec. 3.2) is presented in Fig. 6.
We augmented the Campbell-Robson chart with a frame of uniform luminance and genated two di erent HDR
images (an initial and a nal) to simulate the dark adaptation. The results show both the shift in peak frequency
and the drop and regeneration of absolute sensitivity as expected. As we want tdlistrate only the contrast
processing in this gure, we simplify the equation (6) to Ly = Lyn=(Lm + k), where k is set to 100 cd=n?:
Otherwise the maladapted images (the two middle images in Fig. 6) would be to dark to visualize. Compare
the output of our model in Fig. 6 with Fig. 5 and 1 (right).

In Fig. 7 we compare our results to the approach of Irawan et af. The reference method (upper row) is based
on global tone mapping function and global background luminance I(,g), while our approach (bottom row)
operates on contrasts and utilizes local background luminancel(y). In both cases global adaptation luminance
Lag is assumed. Therefore our method accounts for diverse perception of bright and darkeas of the scene. One
can notice a dierence in the fully adapted state as well (Fig. 7-rightmost images): in our model, the stained
glass window is reproduced sharply and all the details are visible, while the darkr@a below the desk is blurred,
which is the expected behavior. Note that by considering local background luminancel(,) we ignore changes
in the state of adaptation due to attending di erent image regions as a consequence dhe saccadic eye motion.
We rather visualize the image appearance under the condition that the eye attends localleach respective region
without any gaze change. Thus, Fig. 7 (bottom row) presents a synthetic sumrary how each specic region
will be seen under this assumption, but the overall image appearance may not be presest precisely. Irawan



Figure 7. Comparison of our method to the approach of Irawan et al. > simulating the fast adaptation from a dark
environment (10 4 cd=m?) to the stained glass (17 cd=m?). Top row: method of Irawan et al. can not simulate di erences
in perception of contrasts in bright and dark parts of the scene, however our method can (bottom row). Columns from
left to right: t=0:01st=0:02s5t=0:055 t =0:1s t = 60s (fully adapted state). HDR image courtesy of OpenEXR.

used another extreme approach by considering global backgrounty,y (Fig. 7 { upper row), in which case it is
implicitly assumed that through the gaze direction changes the eye adaptation tendsd some average luminance
in the scene. Since the most dramatic changes in light adaptation take place duringhte time required just for
a couple of xations this assumption is also not realistic in particular for video, while it is commonly used.
Thus, Fig. 7 (upper row) gives perhaps a better prediction of overall image impession (except that no frequency
processing is accomplished), but the local detail visibility might be better predictedin Fig. 7 (bottom row).

In Fig. 8 we illustrate an application of our approach to analysis of thevisibility of a display and controls on
the panel in a ight control room. Left column shows fully adapted state, where all the details are well visible.
After the adaptation to the bright sky however, those details are not noticeablefor some seconds.

Our system enables also to simulate even more complex scenario (see Fig. 9) wherelagk of opposing
evidence we consider local adaptatior ; and backgroundL, maps, in which case each local region in the image

Figure 8. Rendering of the interior of an airport control tower. Left: fu lly adapted state (178 cd=m?). Right: maladaptation
due to a previous exposition to the bright sky (10 4 cd=m?), t = 0:5s. Compare the visibility of displays and controls in
close-ups (right pair). HDR image courtesy of Greg Ward.



Figure 9. Simulation of maladaptation in a complex hypothetical scenario. Top row, from left to right: (1) fully adapted
state in a relatively bright living room (adaptation luminance 70 cd=m?), (2) rapid movement to a work-room (8 cd=n?),
time t = 0:02s, (3) sensitivity regenerates and aftere ects diminish (t = 0:1s), (4) in t = 0:5s the observer reached nearly
fully{adapted state, but some dark details are washed out, due to the dim illumination of the work{room. Bottom row:
states of adaptation maps L, corresponding to the upper images. As the values in adaptation maps are HDR, they were
tone mapped using the global version of Reinhard's?* TMO for the display purpose.

has also corresponding local adaptation. Imagine an observer who is adapted to atively bright illumination
of a living room and then she instantly moves to her desk in a dim work{room. r a moment, while her sight
is being regenerated, she does not see the details in some parts of the scene due to the previadaptation to
much brighter environment. The vision reaches the fully adapted state in someseconds, but due to the low
illumination of the work-room, the vision is still not sharp in dark par ts of the scene.

4.1 Fast GPU Implementation

In order to get real{time performance, we moved perceptual (contrast transductia, calculation of maladaptation,
local cones and rods adaptation) and image processing (laplacian pyramid, tone-maing) parts of the algorithm
to the GPU. For the purpose of real{time HDR movie processing we also hadhe radiance format decompression
realized on the GPU. Because of that, we are able to achieve interactive framrates on mainstream hardware.
Our test system is based on Intel Core2 3.0Ghz CPU, 4GB of RAM and NVidia GTX260 GPU. The average
performance is around 75 fps for 1024x1024 HDR image. After processing the tdawe manually copy the
resulting texture to GUI surface. Displaying the image directly would improve the speed even further.

4.2 Simulating Maladaptation in LDR Images

Another possible application of our model is the simulation of maladaptation e ects on contrast perception in
an ordinary (LDR) image, see Fig. 10. Let us assume that only an LDR images available, but we want to know
how its appearance will be a ected due to the maladaptation. It is possible to grform inverse tone mapping®
and derive a reasonable approximation of adaptation map. Having a scene referrddDR image as the adaptation
pattern, we can simulate appropriate HVS reaction for arbitrary LDR imag e as follows: we run the model for the
HDR image and we keep the contrast responseR, for fully adapted observer and for a particular maladapted
state Ry, then we linearize the LDR image using inverse gamma correction and decomposeusing Laplacian
pyramid. To simulate maladaptation in the LDR image, we multiply the va lues in the Laplacian pyramid as



follows:
'ml
L)

R, '

Ci;oj;l = Cij (1)

where C is the current LDR contrast value for pixel i;j and levell of Laplacian pyramid. The nal LDR image

with the simulated maladaptation e ect is obtained by adding C°at all the levels of modi ed Laplacian pyramid.

In this special case we simulate only the e ect of maladaptation to the perceptim of contrasts, as we omit the
luminance processing (i.e. we do not involve equation (6)).

Figure 10. Simulation of maladaptation in two dierent LDR images. In each pai r: left: original LDR image. Right:
maladaptation simulation using the background luminance from the HDR image (200cd=m?) obtained by the inverse tone
mapping. Simulated adaptation luminance: 20cd =m?. HDR image courtesy of Allan Rempel et al. 2

5. CONCLUSION

We presented an e cient, real{time visual maladaptation framework capable of rendering images of a scene as
perceived by a maladapted observer. Our model operates on contrast domain and accosnior supra{threshold
HVS mechanisms such as visual masking, as well as luminance adaptation and ¢st sensitivity as a function
of spatial frequencies that have often been neglected by previous contrast domain mets. We also model
the shift in spatial frequency sensitivity due to maladaptation, which we found to have a signicant e ect
on scene visibility. We discuss a fast GPU implementation that enables interadive rendering of maladapted
images. Our system can potentially be used to simulate human vision in ilimination conditions causing extreme
maladaptation in real{world scenarios such as driving.

5.1 Limitations and Future Work

As the model is not targeted for the simulation of HVS color processing it mainly operates on the achromatic
channel only. Therefore it does not account for chromatic adaptation, color aftereects and other phenomena of
color vision; but we believe those can be pertinently included, if necessary.

The model assumes to input a calibrated HDR image and by modeling of the HVS features is accordingly
able to perform the HDR tone mapping task (for a calibrated HDR image). However, as the primary goal of
the model is the correct simulation of the HVS contrast processing, the resultsdr some extremely high dynamic
range or not calibrated images can not outperform the results of speci cally tuned bne mapping operators. Note
however, that the HVS is also unable to see all the details in the scene simultaneoysior extremely high dynamic
ranges. From this point of view, the results of many \successful" tone mapping perators are not perceptually
correct, as indicated by recent experimental studieg 2’
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