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1 Introduction

In this supplementary material we discuss the subjective validation
study (summarized in the main publication) in more detail. The
goal of the study was to examine the correlation between the ob-
jective quality predictions computed by the proposed video quality
metric, and the subjective responses obtained by the experimental
procedure described below in Section 2. The calibration procedure
(described in Section 4 of the main publication) and the validation
study are complementary, in the sense that the former involves sim-
ple stimuli at near threshold visibility to match the sensitivity of
the metric to that of an average observer, and the latter involves
more complex, application oriented stimuli for validating that the
individual components of the metric work well in concert.

Two important properties of the proposed metric were influential
while designing the validation study: (i) the capability of assessing
the quality of HDR videos, as well as comparing HDR videos with
LDR videos and vice versa, and (ii) the outcome of the metric in the
form of distortion maps that show quality prediction as a function
of spatial position, which is especially important for applications in
computer graphics. To that end the subjective study has the follow-
ing novelties over previous studies on video quality assessment:

• The test set includes LDR-LDR, HDR-HDR, and HDR-LDR
reference-test video pairs with various types of distortions.

• A BrightSide DR37-P HDR display (max. luminance≈ 3000
cd/m2) was used for displaying the videos.

• The subjects are not asked to assess only an overall quality of
the video, but to mark the regions where they see differences
between test and reference videos, resulting in distortion maps
similar to the metric outcome.

In the remainder of this document we will describe our experimen-
tal setup and procedure (Section 2), present (Section 3) and discuss
(Section 4) the results based on the correlation between the outcome
of the subjective study and corresponding predictions of our met-
ric, PDM, HDRVDP and DRIVDP, and conclude with final remarks
and future directions (Section 5).

2 Experimental Methods

The set of 9 reference-test video pairs (1 LDR-LDR, 2 HDR-LDR,
and 6 HDR-HDR) used in the experiment are listed in Table 1. The
video stimuli were generated by imposing temporally varying vi-
sual artifacts to HDR scenes (Figure 1), such as HDR video com-
pression artifacts and temporal random noise along with temporal
luminance modulation and tone mapping. The magnitudes of the
visual artifacts were carefully selected so that there were sub-, near-
and supra-threshold distortions present in the experimental videos.

The temporal random noise was generated by filtering a three di-
mensional array of random values between−0.5 and 0.5 by a Gaus-
sian with standard deviations 20 (high) and 5 (low) pixels along
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each dimension. The magnitude of noise was adjusted by multiply-
ing with two constants separately, such that the artifacts are barely
visible in one setting (low), and clearly visible in the other (high).
HDR compression [Mantiuk et al. 2004] was similarly applied at
two levels to the HDR scenes, where the luminance was globally
modulated over time by 0.5% of the maximum scene luminance to
vary the visibility of image details over time. Videos generated by
applying tone mapping operators [Fattal et al. 2002; Pattanaik et al.
2000] to each input HDR video frame were used in the dynamic
range independent comparisons.

All test videos consisted of 60 frames, and were presented at 24 fps.
In order to faithfully reproduce the luminance values on the HDR
display, the response function of the display was measured using a
Minolta LS-100 luminance meter. The measurements consisted of
32 samples taken from the displayable luminance range with equal
logarithmic spacing. The sample points were then fitted to a 3rd de-
gree polynomial function, from which 100 points were resampled
and stored as a lookup table. Finally, the pixel values for the HDR
videos were determined by cubic spline interpolation between near-
est two luminance levels. Furthermore, the displayed luminance of
the HDR videos were measured again at various regions, and when-
ever necessary, the scenes were slightly recalibrated to ensure that
the displayed luminance values match the actual scene luminance.

# Source Ref. DR Test DR Artifact Type of Test Video

1 Cars HDR HDR Noise - high magnitude, low stddev

2 Lamp HDR HDR Noise - high magnitude, low stddev

3 Desk HDR HDR Noise - low magnitude, low stddev

4 Tree HDR HDR Noise - high magnitude, high stddev

5 Cafe HDR HDR HDR compression - high quality, luminance mod.

6 Tower HDR HDR HDR compression - low quality, luminance mod.

7 Cafe HDR LDR Luminance modulation, Pattanaik’s tone mapping

8 Lamp HDR LDR Luminance modulation, Fattal’s tone mapping

9 Lamp LDR LDR Noise

Table 1: List of the experimental stimuli. Refer to text for details.

The participants of the study were 16 subjects between ages of 23
and 50. They all had near-perfect or corrected to normal vision, and
were naı̈ve for the purposes of the experiment. Each subject evalu-
ated the quality of the whole test set through a graphical user inter-
face displayed on a BrightSide DR37-P HDR display (Figure 2). In
the HDR-HDR, and LDR-LDR comparisons, the task was to mark
the regions in the test video where visible differences were present
with respect to the reference video. In the HDR-LDR comparisons,
on the other hand, the subjects were asked to assess the contrast
loss and amplification. In the instruction phase before the exper-
iment, the subjects were asked to mark a grid tile even if visible
differences were present only in a portion of that grid’s area. They
were also encouraged to mark a grid tile in the case they cannot
decide whether it contains a visible difference or not. The subjects
were placed 0.75 meters away from the display so that a 512× 512
image spanned 16 visual degrees and the grid cell size was approxi-



Figure 1: The video test set is generated from 6 calibrated HDR
scenes (here tone mapped for presentation purpose [Reinhard et al.
2002]). The scene luminance was clipped where it exceeded the
maximum display luminance. The displayed luminance of the
videos resulting from the scenes were between 0.1 and 3000 cd/m2.

mately 1 visual degree. The environment illumination was dimmed
and controlled, and all subjects were given time to adapt to the room
illumination. There were no time limitations set for the experiment,
but the majority of the subjects took 15-30 minutes for the entire
test set.

Figure 2: The experiment was performed through a graphical user
interface shown on the HDR display. Subjects were shown refer-
ence and test videos side by side in a randomized order (right), and
were asked to mark the relevant image locations on a 16 × 16 grid
according to the instructions (left). The interface and messages
were disabled while the videos were being shown. The interface al-
lowed the subjects to watch the videos for an unlimited amount of
iterations.

3 Results

The marked regions for each trial were stored as distortion maps
with 16× 16 resolution, which were then averaged over all subjects
to find the mean subjective response. Next, the metric prediction
for the corresponding stimulus was computed, averaged over the
whole 60 frames, and downsampled to the same resolution as the
mean subjective response. For each video pair, we computed the
2D correlation between the mean subjective response and the metric
prediction (Table 3) and used the results to evaluate the performance
of our metric.

The resulting correlations for our metric vary from 0.733 to 0.883.
The first two columns of Figure 3 show the mean subjective dis-

tortion maps along with the corresponding metric predictions for
visual inspection. Furthermore, the descriptive statistics of these
maps are summarized in Table 2. While not optimal, we believe
that the presented correlations, along with the fact that the maps
obtained by the metric’s predictions and the subjective experiment
look visually similar, clearly show that our metric’s predictions
are accurate for practical purposes. Highest correlations were ob-
tained for the #2 HDR-HDR Lamp stimulus with high magnitude,
low standard deviation noise, and the #7 HDR-LDR Cafe stimulus
with luminance modulation and Pattanaik’s tone mapping (0.883
and 0.879, respectively). For these two cases, the magnitude of the
probability of detection predicted by the metric, and the average of
the binary maps over subjects obtained experimentally are also very
similar. In other cases, either the magnitudes of the mean subjective
maps were lower than the corresponding detection probability mag-
nitude predictions (such as #4 Tree HDR-HDR stimulus with high
magnitude, high standard deviation noise, and #9 Lamp LDR-LDR
stimulus with noise), or a certain region with visible distortions was
missed out (#1 Cars HDR-HDR stimulus with high magnitude, low
standard deviation noise). For the remaining stimuli, a combination
of both deviations can be observed in the metric predictions and
subjective responses. However, even in the worst case (#8, 0.733),
the correlation was at an acceptable level.

Figure 4 shows the standard deviations for each stimulus over the
test subjects, separately for each grid tile. Over all images, the min-
imum and maximum values are obtained as 0 and 0.51, the former
indicating the tiles on which all subjects gave the same response,
and the latter indicating the tiles where approximately half of the
subjects have marked.

4 Discussion

A problem we experienced during the experiment was the extreme
brightness of the sky region of the Tower scene, reaching the max-
imum displayable luminance level (≈ 3000cd/m2). We observed
that subjects were disturbed by the high luminance level and rushed
to the next scene. We also found that the subjects had difficulties
understanding the concept of contrast amplification. We believe the
reason for that might be that contrast amplification often improves
quality, unlike other distortions that were employed in the exper-
iment. As a result, the correlation results in these two cases are
slightly worse compared to the others.

We also computed the predictions of PDM [Winkler 2005],
HDRVDP [Mantiuk et al. 2005], and DRIVDP [Aydın et al. 2008].
The latter two metrics are designed for image quality evaluation,
thus, as in the main publication, the video stimuli was evaluated
for each frame separately. HDRVDP, while capable of evaluating
the quality of HDR images, lacks any temporal processing and is
geared towards comparing images with the same dynamic range.
The DRIVDP addresses the latter limitation, but still suffers from
the former. Consequently, DRIVDP’s predictions for the HDR-
LDR stimuli (numbers 7 and 8) is slightly better than HDRVDP.
PDM, on the other hand, is designed for the video stimuli, but lacks
the HDR and dynamic range independent mechanisms of HDRVDP
and DRIVDP, producing the least average correlation with the sub-
jective responses. As shown in Table 3, our metric significantly
outperforms others in most cases. The significant difference in
average correlations over the entire test set (last row of Table 3)
shows that overall our metric’s predictions are clearly more accu-
rate than others. The corresponding distortion maps predicted by
PDM, HDRVDP and DRIVDP are shown in Figure 3 columns 3 -
5 (averaged and downsampled to 16 × 16 after the computation).

While the relation between the correlation values and distortion
maps is obvious in most cases, the high correlation of PDM for



Stimulus # Subjective Response Our Metric PDM HDRVDP DRIVDP

[min, max]; avg; std [min, max]; avg; std [min, max]; avg; std [min, max]; avg; std [min, max]; avg; std

1 [0.000, 1.000]; 0.177; 0.276 [0.000, 0.850]; 0.128; 0.230 [0.000, 0.301]; 0.082; 0.079 [0.000, 0.019]; 0.001; 0.002 [0.075, 0.417]; 0.194; 0.058

2 [0.000, 1.000]; 0.201; 0.347 [0.000, 0.954]; 0.185; 0.282 [0.000, 0.813]; 0.061; 0.138 [0.000, 0.893]; 0.050; 0.157 [0.072, 0.799]; 0.218; 0.155

3 [0.000, 1.000]; 0.082; 0.242 [0.000, 0.307]; 0.015; 0.045 [0.000, 0.052]; 0.003; 0.008 [0.000, 0.889]; 0.163; 0.247 [0.006, 0.440]; 0.090; 0.078

4 [0.000, 1.000]; 0.124; 0.250 [0.001, 0.457]; 0.094; 0.115 [0.000, 0.024]; 0.007; 0.006 [0.000, 0.000]; 0.000; 0.000 [0.067, 0.240]; 0.137; 0.039

5 [0.000, 1.000]; 0.066; 0.186 [0.000, 0.420]; 0.026; 0.063 [0.000, 0.952]; 0.146; 0.207 [0.000, 0.866]; 0.074; 0.166 [0.040, 0.873]; 0.241; 0.199

6 [0.000, 1.000]; 0.399; 0.389 [0.072, 0.468]; 0.232; 0.103 [0.810, 0.984]; 0.965; 0.026 [0.180, 0.942]; 0.657; 0.202 [0.626, 0.928]; 0.789; 0.058

7 [0.000, 1.000]; 0.312; 0.392 [0.037, 0.984]; 0.451; 0.342 [0.838, 0.984]; 0.980; 0.018 [0.002, 0.953]; 0.448; 0.327 [0.031, 0.953]; 0.374; 0.288

8 [0.000, 0.812]; 0.108; 0.180 [0.041, 0.942]; 0.225; 0.146 [0.606, 0.984]; 0.971; 0.043 [0.005, 0.953]; 0.509; 0.274 [0.148, 0.884]; 0.406; 0.172

9 [0.000, 1.000]; 0.105; 0.238 [0.000, 0.502]; 0.054; 0.104 [0.000, 0.396]; 0.032; 0.066 [0.000, 0.211]; 0.006; 0.025 [0.067, 0.577]; 0.176; 0.097

Table 2: Descriptive statistics of distortion maps (depicted in Figure 3) for each input stimulus. Abbreaviations used: min=minimal value,
max=maximal value, avg=average value, std=standard deviation.

stimulus #3 deserves further explanation. While PDM correctly de-
tects the distorted regions in that stimulus in a spatial sense, the
magnitude of detection probabilities are very low (refer to Table 2),
to the point that they are quantized by the visualization. Thus the
map appears to be blank, but since the relation with the subjective
data is linear, the correlation is high.

For the purposes of generating the maps in Figure 3, in cases of
PDM and HDRVDP we simply used the distortion maps produced
by those metrics. In the DRIVDP case however, the output of the
metric is three separate maps for contrast loss, amplification and
reversal. Thus, it is not clear how to produce a single distortion
map for HDR-HDR and LDR-LDR stimuli. After experimenting
with various methods for combining the distortion maps predicted
by DRIVDP, we found that the combined map defined as:

P k,l,m

combined = 1 − (1 − P k,l,m

loss ) · (1 − P k,l,m

ampl ), (1)

gives the best correlation with subjective data. Here, P k,l,m

loss|ampl

refer to the detection probability of contrast loss and amplification
at scale k, orientation l, and temporal channel m. The resulting

map P k,l,m

combined corresponds to the probability of detecting either
contrast loss or amplification at a visual channel. Leaving contrast
reversal resulted in slightly improved correlations.

5 Conclusion

The high correlations between the metric predictions and subjective
responses over a diverse test set, including HDR and LDR stimuli
with distortions of various types and magnitudes indicate that the
proposed metric provides a reliable estimate of the video quality as
a function of spatial location.

We believe the establishment of a public, standardized test set con-
taining video pairs with diverse dynamic ranges and types of arti-
facts, coupled with corresponding spatially varying subjective re-
sponses, is essential for this line of research. As future work, we
would like to extend our data set and make it publicly available as
a first step in that direction.
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Figure 3: Mean subjective response maps and corresponding metric predictions pairs.
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Figure 4: Maps showing the standard deviations over subjects for each stimulus. The numbers refer to the first column of Table 1.


