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Abstract
This report concerns human perception and its applications to the domain of computer

graphics. Having in mind human perception limitations, we can design a perceptually opti-
mized approach to virtually any issue of contemporary computer graphics. Such a perceptually
optimized approach enable us either to visualize information more effectively and consequently
to grasp important ideas and information from the depiction at a glance, or to save computa-
tional time or improve the quality of results by removing perceptually non-important parts of
visual simulation. Initially, we outline the anatomy of human visual system (HVS) and char-
acteristics of human perception. Consecutively, we summarize the usage of HVS knowledge
in computer graphics, we point out the bottlenecks of contemporary methods and we give the
suggestions for future research. Specifically, we cover the issues of the image quality testing,
the image comparison, and the acceleration of visual simulations and rendering. Finally, we
present an experimental study on comparing image-processing operators.

Keywords
human perception, human visual system, computer graphics, image quality, vision models,

image comparison, acceleration of rendering

1 Introduction

“The goal of computer graphics is not to control light, but to control our perception
of light. Light is merely a carrier of the information we gather by perception.”

(Jack Tumblin, James A. Ferwerda)

Outputs of computer graphics are intended to be observed by human subjects. As human
vision has several limitations, the knowledge of the human visual system (HVS) and of the
human perception can be utilized to improve the performance of various computer graphics
algorithms. In the field of computer graphics the knowledge of the human visual system usually
takes the form of the computational models of human vision. Such a model can be incorporated
at various areas of computer graphics.
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One of the areas where the incorporation of human vision models is extremely beneficial is the
image quality assessment and the image comparison. Image quality assessment and comparison
metrics play an important role in various computer graphics applications. They can be used to
monitor image quality for quality control systems, they can be employed to benchmark image
processing algorithms, and they can be embedded into an image processing system to optimize
the algorithms and the parameter settings. It is well known [49], that classical comparison
metrics like Root Mean Square (RMS) error are not sufficient when applied to the comparison
of images, because they poorly predict the differences between the images as perceived by
the human observer. To solve the problem properly the visual differences predictors have
evolved. The main part of visual differences predictors is typically a model of early vision, so
that they perform well when comparing visually very near images. However their performance
when comparing quite different images with respect to the contained information is poor. The
predictor capable to incorporate such a behaviour would be valuable in the image database
retrievals, to evaluation of the perceptual impact of different rendering algorithms, to analysis
of the effect of various acceleration techniques, etc.

Alhough the progress in the computer hardware still persists, realistic image simulations and
even computer generated animations are yet far away to be computed interactively. However,
no matter how carefully we compute the displayed image, perception determines how much and
how accurately we will understand what we see. Some visible difference predictors have been
successfully applied to the fields of realistic image synthesis and synthetic animations, but most
of current work in computer graphics does not consider any perceptual certainty. The search
for means of utilization of human perception in rendering algorithms, realistic image synthesis,
and computer animation, must go on.

The other problem is that much of the known HVS data has been obtained from specific
psychophysical experiments which have been conducted in specialised laboratory environments
under reductionistic conditions. These experiments were designed to examine a single dimension
of human vision, however, evidence exists [39] to indicate that features of the HVS do not
operate individually, but rather number of functions overlap and should be examined as a
whole rather than in isolation. There is a strong need for the models of human vision currently
used in image synthesis computations to be validated to demonstrate their performance is
comparable to the actual performance of the HVS.

The goal of this report is to present specific properties of human visual system that are,
or could be employed in computational models. Known visible differences predictors, their
drawbacks and advantages are to be summarized. Consecutively, the overview of utilization of
these predictors to the computer graphics rendering is to be given. Finally, the way to overcome
drawbacks of contemporary approaches to the image comparison is to be outlined.

1.1 Organization of the Report

The report is organized as follows. Section 2 covers the physical structure and the perceptual
behaviour of the human visual system. Section 3 summarizes the applications of human per-
ception to computer graphics, namely to the field of image quality measurement. Section 4
describes usage of human perception in order to improve the rendering. Section 5 describes our
contribution to the image comparison field. Section 6 concludes the report. Section 7 is the list
of references and Section 8 gives the abstract of author’s prospective dissertation thesis. The
appendix describes several widely used principles of method design and data analysis.

In this report, we do not cover the tone mapping field, which is concerned with the problem of
mapping a bright scale of image luminances onto a narrow scale of display device in such a way
that the perceived displayed image can be thought of as producing the same mental image as
the original image. See the SIGGRAPH’03 Course #19 [10] for an overview. Furthermore, we

2



do not consider perceptual optimizations of 3D graphics and modeling, i.e. perceptual criteria
for level of detail, and adaptive mesh subdivision and simplification, see outlines by Reddy [42]
and the recent SIGGRAPH’03 Course #03 [13] respectively for a summary and references.

2 Human Visual System

Since the majority of perceptually based approaches to computer graphics is inspired by proper-
ties of the human visual system, we will describe the HVS first. We will begin with the physical
structure that is quite well estabilished and that can help us to understand rather complex char-
acteristics of the perceptual behaviour. This part of the report was largely acquired from the
excellent book on vision science by S. Palmer [39].

2.1 Physical Structure

In this section we will describe basic visual anatomy and physiology. This can give us insights
into the kinds of information that can be coded by visual mechanisms.

2.1.1 The Human Eye

Humans have two eyes, which are approximately spherical in shape except for a bulge at the
front. Located at about the horizontal midline of the head, they sit in nearly hemispherical
holes in the skull, called the eye sockets. Each eye is moved by the coordinated use of six small,
strong muscles, called the extraocular muscles, which are controlled by specific areas in the
brain. Eye movements are necessary for scanning different regions of the visual field without
having to turn the entire head and for focusing on objects at different distances.

iris

lens

cornea

pupil

aqueous
humor

optic
nerve

fovea

retina

ciliary
muscles

Figure 1: A cross section of the human eye. (After Kolb et al. [24].)

The eyes have two important optical functions: to gather light reflected from surfaces in the
world and to focus it in a clear image on the back of the eye. There are many parts of the
eye that accomplish different optical functions, see Figure 1. First, light enters the cornea, a
transparent bulge on the front of the eye behind which is a cavity filled with a clear liquid,
called the aqueous humor. Next, light passes through the pupil, a variably sized opening in the
opaque iris, which gives the eye its external color. Just behind the iris, light passes through the
lens, whose shape is controlled by ciliary muscles. The len’s optical properties can be altered
by changing its shape, a process called accommodation. The photon then travels through the
clear vitreous humor that fills the central chamber of the eye. Finally, it reaches the retina,
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the curved surface at the back of the eye. The retina is densely covered with over 100 million
light-sensitive photoreceptors, which convert light into neural activity.

The information about the light striking the retina is transmitted to the primary visual
cortex in the occipital lobe at the back of the head, see Figure 2. Some estimates put the
percentage of cortex involved with visual function at more than 50% in the macaque monkey,
athough it is probably slightly lower in humans. The complete visual system includes much of
the brain as well as the eyes, and the whole eye-brain system must function properly for the
organism to extract reliable information about the environment.

Optic
nerve

Optic
chiasm

Lateral
geniculate

Optic
radiations Visual

cortex

Superior
colliculus

Figure 2: The human visual system. (After Palmer [39].)

2.1.2 The Retina

After the optics of the eye have done their job, the next critical function of the eye is to
convert light into neural activity so that the brain can process the optical information. In the
visual system, this function is carried out by photoreceptors in the retina: photoreceptors are
specialized retinal cells that are stimulated by light energy. There are two distinct classes of
photoreceptor cells: rods and cones. Rods are more numerous (about 120 million), extremely
sensitive to light, and located everywhere in the retina except at its very center. They are
used exclusively for vision at very low light levels (called scotopic conditions). Cones are less
abundant (about 8 million), much less sensitive to light, and heavily concentrated in the center
of the retina, although some are found scattered throughout the periphery. They are responsible
for our visual experiences under most normal lighting conditions (called photopic conditions)
and for all our experiences of colour. There is a small region, called the fovea, right at the
center of the retina that contains nothing but densely packed cones. The visual angle covered
by the fovea is only about 2 degrees. Another region exists where the axons of the ganglion
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cells leave the eye at the optic nerve. This region is called the optic disk (also known as the
blind spot) and it contains no receptor cells at all. However, we do not experience blindness
there, except under very special circumstances.

Optic nerve
fibers

Ganglion
cells

Inner synaptic
layer

Amacrine cells
Bipolar cells
Horizontal cells

Outer synaptic
layer

Receptor
nuclei

Receptors
pigmented
layer

Light

Figure 3: The human retina. (After Palmer [39].)

Once the optical information is coded into neural responses, some initial processing is ac-
complished within the retina itself by several other types of neurons, including the horizontal,
bipolar, amacrine, and ganglion cells, all of which integrate responses from many nearby cells,
see Figure 3. The inputs of the retinal ganglion cells are arranged in an antagonistic, concentric
pattern composed of a centre and a surround region (the area of the retina which the ganglion
cell receives input from is called the receptive field). The ganglion cell is continually emitting a
background signal; however when light strikes the photoreceptors in one region, this stimulates
an increased response from the retinal ganglion cell (on-response), whereas light falling on the
other region will generate a reduced response (off-response). There are two distinct types of
ganglion cells, the on-center cells, where the centre region is stimulated by an on-response, and
the off-center cells, where the centre region is stimulated by an off-response, see Figure 4.

The axons of the ganglion cells carry information out of the eye through the optic nerve to
the optic chiasm. Here the fibres from the nasal side of the fovea in each eye cross over to the
opposite side of the brain while the others remain on the same side. The result is that the
mapping from external visual fields to the cortex is completely crossed – all of the information
from the left half of the visual field goes to the right half of the brain, while all the information
from the right visual field goes to the left half of the brain. From the optic chiasm, there are
two separate pathways into the brain on each side. The smaller one (only a few percent) goes
to the superior colliculus, a nucleus in the brain stem. This visual center seems to process
primarily information about where things are in the world and to be involved in the control of
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A. On-center, Off-surround B. Off-center, On-surround

Figure 4: Receptive field structure of ganglion cells. On-center, off-surround
cells (A) fire to light onset and stop at offset in their excitatory center, but
they stop firing to light onset and begin firing at offset in their inhibitory sur-
round. Off-center, on-surround cells (B) exhibit the opposite characteristics.
(After Palmer [39].)

eye movements. The larger pathway goes first to the lateral geniculate nucleus (or LGN ) of
the thalamus and then to the occipital cortex (or primary visual cortex ).

2.1.3 Visual Cortex

The human cortex is divided into two halves, cerebral hemispheres, that are approximately
symmetrical. As a result of many neuropsychological studies, it is now well estabilished that
the occipital lobe is the primary cortical receiving area for visual information. Although it
would be a gross overstatement to say that vision scientists understand how visual cortex
works, they are at least beginning to get some glimmerings of what the assorted pieces might
be and how they might fit together.

The first steps in cortical processing of visual information take place in the striate cortex,
sometimes called primary visual cortex or area V1. This is the largest part of the occipital
lobe and it seems likely that the most complex visual processing occurs there. Striate cortex
receives its input from the LGN on the same side of the brain, so the visual input of striate
cortex, like that of LGN, is completely crossed. Both sides are activated by the thin central
vertical strip, measuring about 1 degree of visual field. The cells that are sensitive to this strip
in one side of the brain are connected to the corresponding cells on the other side of the brain
through the corpus callosum, the large fiber tract that allows communication between the two
cerebral hemispheres. The mapping from retina to striate cortex is topological in that nearby
regions on the retina project to nearby regions in striate cortex. The central area of the visual
field, which falls on or near the fovea, receives proportionally much greater representation in
the cortex than the periphery does. This is called the cortical magnification factor.

The inferior temporal centers in the lower (ventral) system seem to be involved in identifying
objects, whereas the parietal centers in the upper (dorsal) system seem to be involved in locating
objects. These two pathways are often called the ”what” system and the ”where” system,
respectively. It seems almost inevitable that these two different kinds of information must get
together somewhere in the brain so that the ”what-where” connection can be made, but it is
not yet known where this happens.

It is now abundantly clear that a great deal of visual processing takes place in parallel across
different areas, each region projecting fibers to several other areas but by no means to all of
them. The connections are generally bidirectional; that is, if area X projects to area Y, then
Y projects back to X as well.
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The Physiological Pathways Hypothesis

One possible relation between anatomical structure and physiological function has begun to
emerge during the last decade. The hypothesis is that there are separate neural pathways
for processing information about different visual properties such as color, shape, depth, and
motion. Livingstone and Hubel [28] proposed that these four types of information are processed
in different neural pathways from the retina onward. They report evidence that color, form,
motion, and stereoscopic depth information are processed in distinct subregions of visual cortical
areas V1 and V2, as indicated schematically in Figure 5.

Color Form Depth V2 Motion MT

Color Form
Depth
Motion

V1

Color
Form

Depth
Motion

LGN

Color
Form

Depth
Motion

RETINA

Figure 5: Schematic diagram of the visual pathways hypothesis.

These areas then project to distinct higher-level areas of cortex: movement and stereoscopic
depth information to area V5 (also called MT, Medial Temporal cortex), color to area V4, and
form through several intermediate centers (including V4) to area IT (InferoTemporal cortex),
where cells have been found that respond selectively to faces, hands, and other highly complex
stimuli. From these areas, the form and color pathways may project to the ventral ”what”
system for object identification and the depth and motion pathways to the dorsal ”where”
system for object localization.

2.2 Visual Perception

Visual perception is the process of acquiring knowledge about environmental objects and events
by extracting information from the light they emit or reflect. Visual perception concerns the
acquisition of knowledge – this means that vision is fundamentally a cognitive activity, distinct
from purely optical processes such as photographic ones. There are indeed important similar-
ities between eyes and cameras in terms of optical phenomena, but there are no similarities
whatever in terms of perceptual phenomena – cameras have no perceptual capabilities at all.
The knowledge achieved by visual perception concerns objects and events in the environment,
perception is not merely about an observer’s subjective visual experiences. Visual knowledge
about the environment is obtained by extracting information, that implies information process-
ing approach to the vision. Finally the information that is processed in visual perception comes
from the light that is emitted or reflected by objects, optical information is the foundation of
all vision.
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2.2.1 Adaptation

Visual perception changes over time as it adapts to particular conditions. When we enter a
darkened room on a bright afternoon, for instance, we cannot see much. After 20 minutes,
however, we can see everything surprisingly well. This increase in sensitivity to light is called
dark adaptation. Adaptation is a very general phenomenon in visual perception – visual expe-
rience may become less intense as a result of prolonged exposure to a wide variety of different
kinds of stimulation: color, orientation, size, motion, etc. These changes in visual experience
show that visual perception is not always a clear window onto reality because we have different
visual experiences of the same physical environment at different stages of adaptation.

2.2.2 Ambiguous figures

To provide us with information, vision is an interpretive process that somehow transforms com-
plex, moving, two-dimensional patterns of light at the back of the eyes into stable perceptions
of three-dimensional space. The objects we perceive are actually interpretations based on the
structure of images rather than direct registrations of physical reality. Potent demonstrations
of the interpretive nature of vision come from ambiguous figures, single images that can give
rise to two or more distinct perceptions, see for an example Figure 6. The interpretations of
these ambiguous figures are mutually exclusive. We perceive just one of them at a time: a duck
or a rabbit, not both. This is consistent with the idea that perception involves the construction
of an interpretive model because only one such a model can be fit to the sensory data at one
time. If perception was completely determined by the light stimulating the eye, there would be
no ambiguous figures because each pattern of stimulation would map onto a unique percept.

Figure 6: Ambiguous figures. Figure on the left can be seen as a duck
(facing left) or a rabbit (facing right). Figure on the right can be seen as a
saxophonist (facing right) or a face of a woman.

2.2.3 Visual Completion

People’s perceptions actually correspond to the models that their visual systems have con-
structed rather than to the sensory stimulation on which the models are based. That is why
perceptions can be illusory and ambiguous despite the nonillusory and unambiguous status of
the raw optical images in which they are based. Perceptual models must be closely coupled
to the information in the projected image of the world and must provide reasonably accurate
interpretations of this information.

Perhaps the most convincing evidence that visual perception involves the construction of
environmental models comes from the fact that our perceptions include portions of surfaces
that we cannot actually see. This perceptual filling in of parts of objects that are hidden from
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view is called visual completion. It happens automatically and effortlessly whenever we perceive
the environment. Visual perception also includes information about self-occluded surfaces, those
surfaces of an object thar are entirely hidden from view by its own visible surfaces.

2.2.4 Impossible Objects

Impossible ojects are two-dimensional line drawings that initially give the clear perception of
coherent three-dimensional objects but are physically impossible, see Figure 7. Such demon-
strations support the idea that vision actively constructs environmental models rather than
simply registering what is present. If visual perception were merely an infallible reflection of
the world, a physically impossible object simply could not be perceived. The kinds of errors
that are evident in perceiving impossible objects seem to indicate that at least some visual
processes work initially at a local level and only later fit the results into a global framework.

Figure 7: Impossible object. The drawing in this figure produce perception
of coherent three-dimensional object, but it is physically impossible.

2.2.5 Classification

Our perceptual constructions go even further than completing unseen surfaces. They include
information about the meaning or functional significance of objects and situations. Beeing able
to classify objects as members of known categories allows us to respond to them in appropriate
ways because it gives us access to vast amounts of information that we have stored from previous
experiences with similar object. Previous experience with members of a given category allows
us to predict with reasonable certainty what new members of the same class will do. As a
consequence, we can deal with most new objects at the more abstract level of their category,
even though we have never seen that particular object before.

2.2.6 Attention and Consciousness

The visible environment contains much more information than anyone can fully perceive. We
must therefore be selective in what we attend to, and what we select will depend a great deal
on our needs, goals, plans, and desires. Perception is not therefore an entirely stimulus-driven
process – perceptions are not determined solely by the nature of the optical information present
in sensory stimulation. Our perceptions are also influenced by cognitive constraints – higher-
level goals, plans, and expectations. We look at different things in our surroundings depending
on what we are trying to accomplish, and we may perceive them differently as a result.

One of the functions of attention is to bring visual information to consciousness. Certain
properties of objects do not seem to be experienced consciously unless they are attended, yet
unattended objects are often processed fully enough outside of consciousness to attract our
attention. Once the object is attended, we become conscious of its detailed properties and

9



are able to identify it and discern its meaning in the present situation. In general, lower
levels of perception do not seem to be accessible to, or modifiable by, conscious knowledge
and expectations, whereas higher levels do. However not much is yet known about the role of
consciousness in perception.

2.3 Image Processing Theories

Several theories for description of the nature of human image processing have evolved over the
years. These theories compete because their functional implications are quite different and no
one is universally held. We will describe the two most common of them: line–edge detection
theory, and spatial frequency theory, although yet another approaches exist (connectionistic
theory, neural networks, scale-space, etc.). Finally we will give an overview of contemporary
theoretical hypothesis about the architecture of human image processing. This hypothesis
integrates in some respect these two fundamentally different theories.

2.3.1 Line and Edge Detection Theory

Hubel and Wiesel [22] were the first to successfully apply the receptive field mapping techniques
(described in section 2.1.2) to striate cortex. Their investigations revealed that there were
several different kinds of cortical cells that had different receptive field characteristics. They
classified them into three types: simple cells, complex cells, and hypercomplex cells. For simple
cells, the responses to complex stimuli can be predicted from their responses to individual spots
of light. A simple cell’s response to a larger, more complex pattern of stimulation can therefore
be roughly predicted by summing its responses to the set of small spots of light that compose
it. There were identified several different subtypes of simple cells. The vast majority have an
elongated structure, firing most vigorously to a line or an edge at a specific retinal position and
orientation. Simple cells that have an area of excitation on one side and an area of inhibition on
the other, respond to a luminance edge in the proper orientation and are called edge detectors.
Simple cells that have receptive fields with a central elongated region that is either excitatory
or inhibitory, with an antagonistic field on both sides of it, respond maximally to bright or
dark lines and are called line detectors or bar detectors.

The view of image processing that has emerged from these findings is that an early step in
spatial image processing is to find the lines and edges in the image. Higher-level properties,
such as shapes and orientations of objects, might then be constructed by putting together the
many local edges and lines that have been identified by their detector cells in V1. Whether or
not this is the correct view is still an open question, but it has dominated thinking about the
initial stages of visual processing for several decades.

About 75% of the cells in striate cortex are complex cells. Similar to simple cells, complex cells
have elongated receptive fields but they differ from simple cells in several important respects:
complex cells are highly nonlinear, they tend to be highly responsive to moving lines or edges
anywhere within their receptive field. Complex cells are not very sensitive to the position
of certain stimuli and they tend to have somewhat larger receptive fields than simple cells.
Complex cells are thought to receive input from several simple cells whose receptive fields have
the same orientation but different positions.

The third type of striate cell is the hypercomplex cell. The most striking characteristic of
hypercomplex cells is that extending a line or edge beyond a certain length causes them to fire
less vigorously than they do to a shorter line or edge. For this reason, they are often called
end-stopped cells. Recent quantitative studies suggest that the degree of ”end-stopping” is a
continuum rather than an all-or-none phenomenon.
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2.3.2 Spatial Frequency Theory

The spatial frequency theory dominates psychophysical theories of early spatial vision because
it is able to explain a large number of important and surprising results from psychophysical
experiments, not only in adult vision, but in infant vision as well. This theory is based on
an atomistic assumption: the representation of any image, no matter how complex, is an
assemblage of many primitive spatial ”atoms”. The primitives of spatial frequency theory
are spatially extended patterns called sinusoidal gratings: two-dimensional patterns whose
luminance varies according to a sine wave over one spatial dimension and is constant over the
perpendicular dimension. Each primitive sinusoidal grating can be characterized completely
by four parameters: its spatial frequency, orientation, amplitude, and phase. Spatial frequency
is usually specified in terms of the number of light/dark cycles per degree of visual angle.
The orientation of the grating is specified in degrees counterclockwise from vertical. Phase
is specified in degrees, such that the grating whose positive-going inflection point is at the
reference point is said to have a phase 0◦ (called sine phase).

There is a good formal mathematical reason for choosing sinusoidal gratings as primitives:
Fourier analysis. Fourier analysis is a method, by which any two-dimensional luminance image
can be analyzed into the sum of a set of sinusoidal gratings that differ in spatial frequency,
orientation, amplitude, and phase. The Fourier analysis of an image consists of two parts: the
power spectrum and the phase spectrum. The power spectrum specifies the amplitude of each
grating at a particular spatial frequency and orientation, whereas the phase spectrum specifies
the phase of each grating at a particular spatial frequency and orientation. If all of these
gratings at the proper phases and amplitudes were added up, they would exactly recreate the
original image. Thus, Fourier analysis provides a very general method of decomposing complex
images into primitive components, since it has been proven to work for any image. Fourier
analysis is also capable of being ”inverted” through a process called Fourier synthesis so that
the original image can be reconstructed from its power and phase spectra.

Spatial Frequency Channels

The spatial frequency theory proposes that early visual processing can be understood in terms
of a large number of overlapping psychophysical channels that are selectively tuned to different
ranges of spatial frequencies and orientations. Thanks to many psychophysical studies of peo-
ple’s detection and discrimination of grating stimuli [1], there is now a great deal of evidence
to support this view.

The standard measurement of human sensitivity to gratings at different frequencies is called
the contrast sensitivity function (CSF). It is determined by finding the lowest contrast at which
the observer can just barely detect the difference between a sinusoidal grating and a uniform
gray field, that is, the threshold at which a very low-contrast grating stops looking like a
uniform gray field and starts to look striped. This threshold is measured for gratings at many
different spatial frequencies from low to high. The results can be summarized in a graph in
which the contrast sensitivity at threshold is plotted as a function of spatial frequency, as shown
in Figure 8.

The CSF shows that people are most sensitive to intermediate spatial frequencies at about 4–
5 cycles per degree of visual angle. If the CSF is measured under low-light (scotopic) conditions
in humans, sensitivity to all frequencies drops dramatically, especially at the highest frequencies.
This means that at night, when just the rods are operating, human vision lacks the high acuity
that it has in daylight.

Several measurements on human subjects have shown the selective adaptation of channels.
The extended exposure to the grating caused the subject’s visual system to adapt, that is, to
become less sensitive after the prolonged viewing experience (see section 2.2.1), but only near
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Figure 8: Contrast sensitivity function.

the particular spatial frequency and orientation of the adapting grating. Just as gratings of
a particular spatial frequency and orientation produce specific adaptation effects, they also
produce specific aftereffects.

Local Spatial Frequency Theory

Psychophysical channels are hypothetical mechanisms inferred from behavioral measures rather
than directly observed biological mechanisms. If these channels are real, however, they must
be implemented somewhere in the visual system. To face this problem there arises second
theory about the function of the cells in striate cortex. There is now substantial evidence
that these cells may be performing a local spatial frequency analysis of incoming images. A
local, piecewise, spatial frequency analysis can be accomplished through many small patches
of sinusoidal gratings that ”fade out” with distance from the center of the receptive field.
This sort of receptive field structure, called a Gabor function, is constructed by multiplying
a global sinusoidal grating by a bell-shaped Gaussian envelope, see the multiscale transforms
introduction in the Appendix B.

The degree of frequency tuning in cortical cells seems to fall along a continuum; some are very
sharply tuned and others quite broadly tuned. Cells that are tuned to high spatial frequencies
have narrower tuning than do cells that are tuned to low spatial frequencies. There is a similar
continuum in the degree of orientation tuning; some cells respond only to gratings that are
very close to their ”favorite” orientation, whereas others respond almost equally to gratings in
any orientation. Moreover, cells that are broadly tuned for spatial frequency are also broadly
tuned for orientation, and cells that are narrowly tuned for spatial frequency are also narrowly
tuned for orientation.

Although the evidence that simple and complex cells in area V1 may be doing a local spatial
frequency analysis of input images is impressive, this conclusion is not universally held. Nev-
ertheless, local spatial frequency theory must be counted a very serious alternative to the line
and edge detection theory.
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Architecture of Image Processing Hypothesis

We have reviewed two theories about the function of the cortical cells. The psychophysical
view is that these cells describe images in a piecewise, local Fourier analysis. However, the edge
detection theory claims that these same cells are actually the physiological implementation of
edge detection mechanisms at different spatial scales. These different views are perhaps not as
incompatible as they appear.

...

Local Spatial
Frequency Analyzers

Area V1

Center-Surround
Analyzers LGN

Edge
Analyzers

Curvature
Analyzers

Texture
Analyzers

Motion
Analyzers

Stereo
Analyzers

Figure 9: A theoretical hypothesis about the architecture of image processing.

The hypothesis is that local spatial frequency theory and edge detection theory may be
appropriate for different levels of the visual system, as diagrammed in Figure 9: center/surround
cells in retina and LGN provide input to local spatial frequency analyzers in area V1 of visual
cortex, which then project their output to a variety of different modules that compute edges,
surface curvatures, textures, stereopsis, and so on, at later stages. According to this view, edge
detectors would then be constructed from the output of local spatial frequency analyzers by
coding for the output pattern that is characteristic of luminance edges.

3 Perceptually Based Image and Video Quality Metrics

In recent years a lot of effort has been given to the research of incorporation of human perception
into the computer graphics and image processing methods. Thanks to this we have seen a big
progress in several areas, e.g. in the field of image and video quality assessment. The goal of
an objective image or video quality assessment is to develop quantitative measures that can
automatically predict perceived image quality [54]. An objective image quality metric can play
an important role in a broad range of applications, such as image acquisition, compression,
communication, displaying, printing, restoration, enhancement, analysis and watermarking.

In this section we will first outline the general framework of quality metrics. Then we will
summarize the perceptually driven image and video quality metrics that are or could be used
in computer graphics. Finally, we will outline merits and shortcomings of these techniques.

3.1 General Framework of Perceptual Quality Metrics

A great variety of models has been proposed in the literature. For many of these models,
common computational parts can be identified [55]. These parts are: preprocessing, CSF
filtering, channel decomposition, error normalization and masking, and finally the error pooling,
see Figure 10.

• The pre-processing stage may perform alignment, transformations of color spaces, cali-
bration for display devices, point spread function filtering, and light adaptation.
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Figure 10: Block diagram of typical discrimination/quality metric.

• CSF may be implemented before the channel decomposition using linear filters that ap-
proximate the frequency responses of the CSF. Some metrics, on the other side, implement
CSF as weighting factors for channels after the channel decomposition.

• Channel decomposition is used to model the frequency selective channels in the HVS.
The channels serve to separate the visual stimulus into different spatial and temporal
subbands. During this phase, quality metrics differ mostly in the chosen filters.

• Error normalization and masking is typically implemented within each channel. Most
models implement masking in the form of a gain-control mechanism that weights the
error signal in a channel by a space-varying visibility threshold for that channel. The
visibility threshold adjustment at a point is calculated based on the energy of the signal
in the neighbourhood of that point, as well as the HVS sensitivity for that channel in the
absence of masking effects.

• Error pooling is the process of combining the error signals in different channels into a single
distortion/quality interpretation. The typical implementation uses Minkowski summation
(also called Lp-norm) on the two sets of channels to compute the model response r:

r =
( ∑

l

∑
k

|el,k|β
)1/β

,

where el,k is the normalized and masked error of the k-th coefficient in the l-th channel,
and β is a constant with a value between 1 and 4.

3.2 Perceptual Image Quality Metrics

Objective image quality metrics serve primarily to assessment of the difference between two
images, an original image and a distorted image. They can be classified according to the
availability of an original image, with which the distorted image is to be compared. Most
existing approaches are known as full-reference, meaning that a complete reference image is
assumed to be known. In many practical applications, however, the reference image is not
available, and a no-reference or ”blind” quality assessment approach is desirable. In a third
type of method, the reference image is only partially available, in the form of a set of extracted
features made available as side information to help evaluate the quality of the distorted image.
This is referred to as reduced-reference quality assessment.

Image quality metrics could be employed not only to image comparison, but also to accel-
eration of rendering algorithms, perception-guided rendering of animations, etc., as
one may see in Chapter 4. Since the visible differences predictor by Daly is extensively applied
in the context of this report, it will be described more thoroughly.
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3.2.1 Pixel-Based Metrics

The mean squared error (MSE) and the peak signal-to-noise ratio (PSNR) are the most pop-
ular difference metrics in image and video processing. The MSE is the mean of the squared
differences between the gray-level values of pixels in two pictures I and Ī:

MSE =
1
XY

∑
x

∑
y

[I(x, y)− Ī(x, y)]2,

for pictures of size X × Y . The average difference per pixel is thus given by the root mean
squared error RMSE =

√
MSE.

The PSNR in decibels is defined as:

PSNR = 10 log
m2

MSE
,

where m is the maximum value that a pixel can take (e.g. 255 for 8-bit images). Color PSNR
is a version of the PSNR that accounts for colors, using perceptually uniform differences. Both
MSE and PSNR are well-defined only for luminance information, there is no agreement on the
computation of color values.

3.2.2 Model After Mannos and Sakrison

The first perception based image quality metric for luminance images was developed by Mannos
and Sakrison [31]. Computation of the proposed model begins by normalizing all the luminance
values Lij by the mean luminance Lm. The nonlinearity in perception is accounted for by taking
the cubed root of each normalised luminance. A Fast Fourier Transform is computed of the
resulting values, and the magnitude of the resulting transform at frequencies in the horizontal
and vertical directions (u, v), (where u and v are expressed in terms of cycles per visual degree)
is denoted fuv(|| 3

√
L
Lm

||). The magnitudes fuv are then filtered with the CSF AM (u, v) = AM (r),
where r = u2 + v2 to account for spatial frequency sensitivity to produce the array of values
guv :

AM (r(u, v)) = 2.6 ∗ [0.0192 + 0.144
√
r] exp[−(0.144

√
r)1.1],

guv = fuv(||(
L

Lm
)0.333||) ∗AM (r(u, v)).

Finally, the distance between the two images is computed by finding the Mean Square Error
of the values guv for each of the two images:

M(X;Y ) =
1
N

∑
all u,v

(gX,uv − gY,uv)2.

This technique therefore measures similarity in Fourier amplitude between images. It was
shown to correlate quite well with subjective ranking data. Despite its simplicity, this metric
was one of of the first works in engineering to recognize the importance of applying vision
science to image processing.

3.2.3 Model After Gervais

Another simple model was adapted from a study of confusion between letters of the alphabet [15]
by Rushmeier et al. [43]. The model includes the effect of phase as well as magnitude in the
frequency space representation of the image. The luminances are normalised by dividing by
the mean luminance. An FFT is computed producing an array of phases puv(|| LLm

||) and
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magnitudes fuv(|| LLm
||) . The magnitudes are then filtered with an anisotropic CSF filter

function constructed by fitting splines to psychophysical data presented by Campbell et al. [5],
producing the filtered values guv(|| LLm

||). The distance between images is then computed using:

M(X;Y ) =
1
N

∑
all u,v

(((log gX,uv + 1)− (log gY,uv + 1))(1 + pX,uv − pY,uv))2.

Since the Gervais model include phase (i. e. pixel position) information, its performance
suffers due to subjectively minor registration problems between images. However, in situations
where geometric alignment is not a problem, or is of critical importance for some other reason,
this model may actually outperform the others.

3.2.4 Visible Differences Predictor

The Visible Differences Predictor [8] (VDP) is one of the best-known image distortion metrics.
The VDP model interprets early vision behavior, from retinal contrast sensitivity to spatial
masking. Figure 11 shows the use of the VDP, which consists of three main stages: components
for calibration of the input images, a human visual system (HVS) model and a method for
displaying the HVS visible differences. The input to the algorithm includes two images and
parameters for viewing conditions, whereas the output is a map describing the visible differences
between them (see Figure 22 on the page 31 for an example). The output map defines the
probability of detecting the differences between the two images as a function of their location
in the images. This metric, probability of detection, provides a description of the threshold
behavior of vision but does not discriminate among different suprathreshold visual errors.
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Figure 11: Block diagram of the Visible Differences Predictor (heavy lines
indicate parallel processing).

Calibration

Firstly, the input images represented by unitless digital numbers are calibrated. The calibrating
input parameters are: the viewing distance for which the VDP will make its visual prediction,
and the physical pixel spacings, which along the viewing distance map the visual frequencies
expressed in cycles per degree (c/deg) to frequencies expressed digitally as a fraction of the
Nyquist frequency.

Human Visual System Model

The human visual system model is the key element of the VDP. It concatenates on the lower-
order processing of the visual system, such as the optics, retina, lateral geniculate nucleus,
and striate cortex. The HVS model consists of a number of processes that limit visual sen-
sitivity. Three main sensitivity variations are accounted for, namely, as a function of light

16



level, spatial frequency, and signal content. Sensitivity S is defined as the inverse of the con-
trast CT required to produce a threshold response, S = 1/CT , where contrast is defined as
C = (Lmax − Lmean)/Lmean, where Lmax and Lmean refer to the maximum and mean lumi-
nances.

The variations in sensitivity as a function of light level are simulated by amplitude nonlin-
earity. Each input luminance Lij is transformed by simplified version of the retinal response
to an ”amplitude non-linearity value” bij defined as: bij = Lij/(Lij + 12.6L0.63

ij ), where the
constants 12.6 and 0.63 apply when luminance is expressed in cd/m2. For this model the
adaptation level for an image pixel is solely determined from that pixel.

The variations as a function of spatial frequency are modeled by the contrast sensitivity
function, implemented as a filtering process. A Fast Fourier transform (FFT) is applied to
the values bij . The resulting magnitudes, fuv(b) are filtered by a CSF which is a function of
the image size in degrees and light adaptation level Lm. The resulting contrast sensitivity filter
AD(r(u, v)) is given by:

AD(r(u, v)) = (0.008/r1.5 + 1)−0.21.42
√
r exp(−0.3

√
r)

√
(1 + 0.06 exp (0.3

√
r),

where r = u2 + v2.

The variations in sensitivity due to a signal content are reffered to as masking. Masking
effects are modeled by the detection mechanism, which is the most complicated element of
the VDP. It consists of four subcomponents: image channeling, spatial masking, psychometric
function, and probability summation. Image channeling involves a decomposition similar to the
cortex transform introduced by Watson [56]. Cortex transform is a multi-resolution pyramid
(see Appendix A) that simulates the spatial-frequency and orientation tuning of simple cells
in the primary visual cortex (see Section 2.3). During the image channeling stage, the input
image is fanned out from one channel to 31 channels or bands as follows. Each channel is
associated with one cortex filter which consists of a radial filter (dom, difference of mesa filter)
and an orientational filter (fan filter). The total number of radial filters is six resulting in five
frequency bands and one base band. Each of these bands except for the base band is further
fanned out into six channels of different orientation, see Figure 12. Thus five frequency bands
times six orientations per bands plus one base band results in 31 channels.
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Figure 12: Cortex transform. On the left: organization of the filter bank.
On the right: decomposition of the image frequency plane into the radial
and orientation selectivity channels.

Spatial masking reduces the detectability of a given stimulus through the simultaneous pres-
ence of an additional suprathreshold stimulus. The masking depends on several factors, such
as mutual masking, learning effects, the nature of masking signal, etc. Due to visual masking,
threshold values can be elevated. This is accounted for after the transformation of all chan-
nels back to the spatial domain. For every channel and for every pixel, the elevation of the
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detection threshold is calculated based on the mask contrast for that channel and that pixel.
Mutual masking can be considered by taking the minimal threshold elevation value for the
corresponding channels and pixels of the two input images.

Psychometric function estimates the probability of detecting the differences for a given chan-
nel. The applied psychometric function describes the increase in the probability of detection
as the signal contrast increases. Once the detection probabilities have been computed for each
band of the filter hierarchy, the probability images are combined into single image by pooling
together probability contributions from all bands as a function of position.

Difference Visualization

There are two ways for visualizing the VDP output. The first technique is the free-field differ-
ence map, where the visible difference predictions appear on a uniform field with a gray value
near the system mean. The second method, the in-context difference map, is the mapping of
the output probabilities in color on the reference image. It is assumed that the difference can be
perceived for a given pixel when the probability value is greater than 0.75, which is a standard
threshold value for discrimination tasks.

3.2.5 Perceptual Distortion Measure by Teo and Heeger

Teo and Heeger [49] presented a perceptual distortion measure based on the so-called normal-
isation model – the nonlinear model of early phases of human vision. The model fits empirical
measurements of the response properties of neurons in the primary visual cortext (see Sec-
tion 2.1.3), and the psychophysics of spatial pattern detection. In the primary visual cortex,
a so-called contrast gain control mechanism keeps natural responses within the permissible
dynamic range while at the same time retaining global pattern information. In the metric,
contrast gain control is realized by an excitatory nonlinearity that is inhibited divisively by
a pool of responses from other neurons. The channel decomposition process uses quadrature
steerable filters with six orientation levels and four spatial resolutions. The distortion measure
is computed from the resulting normalized responses by a simple squared-error norm to produce
the difference map, similar to one produced by the VDP. Masking is modeled through contrast
normalization and response saturation.

Authors in the paper [49] thoroughly demonstrate that the proposed measure is far better
than the MSE and illustrate the usefulness of the model in measuring perceptual distortion in
real images.

3.2.6 Visual Discrimination Model

The Sarnoff Visual Discrimination Model [29] (VDM) is another image discrimination metric.
The overall structure of the model is outlined in Figure 13. The VDM operates in the spatial
domain. First, the inputs are convolved with an approximation of the point spread function
of the eye’s optics. The signals are then re-sampled to reflect the photoreceptor sampling in
the retina. A Laplacian pyramid [4] (see Appendix A) is used to decompose the images into
seven resolutions (each resolution is one-half of the immediately higher one), followed by band-
limited contrast calculations. A set of orientation filters implemented through steerable filters
of Freeman and Adelson [14] is then applied for orientation selectivity in four orientations.
The CSF is modeled by normalizing the output of each frequency-selective channel by the
base-sensitivity for that channel. Masking is implemented through a sigmoid non-linearity,
after which the errors are convolved with disk-shaped kernels at each level. Finally, a distance
measure or JND map is computed as the Lp-norm (Minkowski summation) of the masked
responses.
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Figure 13: Block diagram of the Visual Discrimination Model.

The VDM is one of the few models that take into account the eccentricity of the images in
the observer’s visual field. It was later modified to the Sarnoff JND metric for color video [57].
The complexity of Sarnoff VDM is O(N), because the VDM operates in the spatial domain
and avoids expensive FFT and FFT−1 transformations which take up to 40% of the execution
time in the Daly VDP.

3.2.7 Gabor Pyramid Model of the HVS

Taylor et al. [48] presented a Gabor pyramid-based model of the human visual system (HVS)
for image quality assessment. Their model departs from previous approaches in three ways:

• a physiologically and psychophysically plausible Gabor pyramid is used to model a recep-
tive field decomposition

• psychophysical experiments are involved to directly assess the percept to be modeled

• the discrimination performance is modeled by using discrimination thresholds instead of
detection thresholds.

A number of physiological studies have confirmed the hypothesis that mammalian visual
systems contain neurons whose receptive fields closely resemble Gabor patches [48]. Because of
the physiological and psychological plausibility of Gabor decomposition, the proposed model
involves a Gabor pyramid.

The model accepts two grayscale images as inputs and generates a probability map as out-
put. A block diagram of the model is shown in Figure 14. A multiresolution decomposition
is performed on each image to generate a number of channels, each containing the response
of an ensemble of visual receptors. The receptors are modeled by Gabor functions of varying
frequency and orientation. The multiresolution pyramid is built by lowpass filtering and deci-
mating the original image, see Appendix A. Each output image for a particular pyramid level
is called base image. The base image for each pyramid level is convolved with even and odd
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Figure 14: Block diagram of the Gabor Pyramid Model.

symmetric Gabor wavelets at eight orientations. The square root of the sum of the squares of
the resulting even-odd image pairs describes the response of an ensemble of neurons tuned to
a particular spatial frequency and orientation. These images are called the channel images.

The Psychometric Look Up Table (LUT) consists of a family of psychometric functions that
have been empirically determined by psychophysical experiments described below. The Psycho-
metric Selector selects the appropriate psychometric function from the family of psychometric
functions in the Psychometric LUT. A higher pyramid level base image determines the adapta-
tion level, and the channel image determines the frequency, orientation, and reference contrast
levels used to select the appropriate psychometric function. The difference between the contrast
images for each channel is then applied to the appropriate psychometric function to produce
a separate probability map for each channel. All of the probability maps from the different
channels are combined using probability summation.

Two psychophysical experiments were conducted to determine the parameters of the model.
The first experiment tested the visual system’s sensitivity to Gabor patches as a function of
spatial frequency, orientation, and average luminance. The second experiment compared the
relation between detection and discrimination thresholds.

3.2.8 Wavelet Visible Difference Predictor

Bradley’s [3] wavelet visible difference predictor (WVDP) is largely based on previously men-
tioned (see Section 3.2.4) visible differences predictor, but has a number of modifications that
make it more amenable to potential integration into a wavelet based image comparison scheme.
These modifications include the use of a separable wavelet transform instead of the cortex trans-
form, the application of a wavelet contrast sensitivity function, and a simplified definition of
sub-band contrast that allows prediction of noise visibility directly from wavelet coefficients,
see Figure 15.

Another wavelet based metric has been proposed by Lai and Kuo [26]. Their metric is based
on the Haar Wavelet and the masking model can account for channel interactions as well as
suprathreshold effects.
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3.2.9 Multistage Perceptual Quality Assessment Model

Multistage perceptual quality assessment model [38] (MPQA) was proposed to compare origi-
nal and lossy compressed digital angiogram images. As shown in Figure 16, the MPQA model
includes amplitude nonlinearity, octave bandwidth spatial frequency decompositions into six
orientations using Watson’s cortex transformation [56], and contrast masking based on CSF
modeling and region classification from the decomposed images. A perceptual distortion vis-
ibility map (PDVM) is produced via a distance computation and summation of efforts across
different spatial frequency bands. A perceptual quality rating (PQR) is then calculated from
the PDVM converting fidelity to quality, and transformed into a one to five scale, PQR1−5.
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Figure 16: Block diagram of the MPQA model.

As one may notice, the MPQA model is based on previously mentioned quality assessment
models (mainly on the VDP, see Section 3.2.4), however it differs in the inclusion of contrast
masking as a function of background uncertainty. The human eye can tolerate larger errors
in high uncertainty simuli (i.e. in textured areas) than in low uncertainty stimuli of the same
contrast (i.e. along edges). The spatially decomposed images are therefore classified into
flat, edge, and texture regions to consider the relationship between stimulus and background
uncertainty. Flat regions are the areas with lower contrast than the base threshold contrast
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given by CSF. Edge areas are detected using a Sobel edge detector. Remaining regions are
classified as texture regions. The threshold values are then elevated accordingly to the area
type.

3.2.10 Metro: measuring error on simplified surfaces

Metro [6] is a tool that allows one to compare the difference between a pair of surfaces (e.g. a
triangulated mesh and its simplified representation) by adopting a surface sampling approach.
It has been designated as a highly general tool, and it does no assumption on the particular
approach used to build the mesh representation. It returns both numerical results (meshes
areas and volumes, maximum and mean error, etc.) and visual results, by coloring the input
surface according to the approximation error.

Metro evaluates the difference between two meshes S1 and S2, on the basis of the approxi-
mation error measure. The approximation error between two meshes is defined as the distance
between corresponding sections of the meshes. Given a point p and a surface S, the distance
e(p, S) is defined as:

e(p, S) = min
p′∈S

d(p, p′),

where d() is the Euclidean distance between two points in E3. The one-sided distance between
two surfaces S1, S2 is then defined as:

E(S1, S2) = max
p∈S1

e(p, S2).

Given a set of uniformly sampled distances, the mean distance Em between two surfaces is
defined as the surface integral of the distance divided by the area of S1:

Em(S1, S2) =
1
|S1|

∫
S1

e(p, S2)ds.

The error is evaluated by scan converting the first mesh faces with a user-specified sampling
step, and computing a point-to-surface distance for each scan-converted point. The mean and
maximum distances between meshes are returned.

Although Metro does not explicitly utilize any human visual system properties in the compu-
tation, it has been used in several psychophysical experiments. Metro v.2 is available as public
domain software at the Visual Computing Group web site of the CNUCE and IEI, C.N.R.
Institutes at Pisa (http://miles.cnuce.cnr.it/cg/metro.html).

3.3 Video Quality Metrics

Assessment of video quality in terms of artifacts visible to the human observer is becoming very
important in various applications dealing with digital video encoding, transmission, compression
techniques, and computer graphics. Subjective video quality measurement is costly and time-
consuming, and requires many human viewers to obtain statistically meaningful results. Several
video quality metrics have been developed to face this problem.

Same as perceptual image quality metrics, the perceptual video quality metrics can save time
by elimination of subjective testing. Moreover these metrics can help a lot when optimizing the
storage space or download times of video clips. Applications of video quality metrics include:

• video encoder tuning and optimization,

• video security and watermarking,

• video quality monitoring.
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In this section we will describe various artifacts that can occur in a video sequence. Consec-
utively, we will give a brief overview on perceptually based video quality metrics.

3.3.1 Artifacts

We can distinguish a variety of artifacts in a video seguence [57]. Some of them may be caused
by the compression algorithm, while the others occur as a consequence of transmission errors
and various video conversions.

• Blockiness or the blocking effect refers to a block pattern in the compressed sequence.
It is due to the independent quantization of individual blocks (usually 8 × 8 pixels) in
block-based DCT coding schemes.

• Blur is characterised by the loss of fine detail and the smearing of edges in the video.
It is typically caused by a high-frequency attenuation at some stage of the recording or
encoding process. Wavelet-based encoders also cause blurry artifacts.

• Flickering appears when a scene has high texture contrast. Texture blocks are compressed
with variyng quantization factors over time, which results in a visible flickering effect.

• Color bleeding is the smearing of the color between areas of strongly differing chrominance.
It results from the suppression of high-frequency coefficients of the chroma components.
Due to chroma subsampling, color bleeding extends over an entire block.

• Aliasing can be noticed when the content of the scene is above the Nyquist rate, either
spatially or temporally.

• Mosquito noise is a temporal artifact seen mainly in smoothly textured regions as lumi-
nance/chrominance fluctuations around high-contrast edges or moving objects. It is a
consequence of the varied coding of the same area of a scene in consecutive frames of a
sequence.

• When transporting media over noisy channels packet loss or packet delay can occur. Such
losses or delays can affect both the semantics and the syntax of the media stream.

A survey of video coding distortions can be found in an article by Yuen and Wu [58].

3.3.2 VQM by Lukas and Budrikis

The first video quality metric was developed by Lukas and Budrikis [30]. It is based on a spatio-
temporal model of the contrast sensitivity function using an excitatory and an inhibitory path.
The two paths are combined in a nonlinear way, enabling the model to adapt to changes in
the level of background luminance. Masking is also incorporated in the model by means of a
weighting function derived from the spatial and temporal activity in the reference sequence. In
the final stage of the metric, an Lp-norm (Minkowski summation) of the masked error signal is
computed over blocks in the frame whose size is chosen such that each block covers the size of
the foveal field of vision. The resulting distortion measure was shown to outperform MSE as a
predictor of perceived quality.
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3.3.3 ST-CIELAB

Tong et al. [50] proposed a single-channel video quality metric called ST-CIELAB (spatio-
temporal CIELAB). ST-CIELAB is an extension of the spatial CIELAB (S-CIELAB) image
quality metric [59]. Both are backward compatible to the CIELAB standard, i.e. they reduce
to CIE L∗a∗b∗ for uniform color fields. The ST-CIELAB metric is based on a spatial, temporal,
and chromatic model of human contrast sensitivity. The contrast sensitivity is modeled in an
opponent color space, where the color information is encoded as white-black, red-green and
blue-yellow color difference signals. After the CSF modeling, the data are transformed to CIE
L∗a∗b∗ space, whose difference formula is used for pooling.

3.3.4 Moving Picture Quality Metric

The Moving Picture Quality Metric (MPQM) proposed by Lambrecht [51] is a multichannel
video quality model. It is based on a local contrast definition and Gabor-related (see Apendix B)
filters for the spatial decomposition, two temporal mechanisms, as well as a spatio-temporal
contrast sensitivity function and a simple intra-channel model for contrast masking. A color
version of the MPQM based on an opponent color space was presented as well as a variety
of appplications and extensions of the MPQM, e.g. for assessing the quality of certain image
features such as contours, textures, and blocking artifacts, or the study of motion rendition.

Due to the MPQM’s purely frequency-domain implementation of the spatio-temporal filter-
ing process and the resulting huge memory requirements, it is not practical for measuring the
quality of sequences with a duration of more than a few seconds, however. The Normaliza-
tion Video Fidelity Metric (NVFM) [27] avoids this shortcoming by using a steerable pyramid
transform for spatial filtering and discrete time-domain filter approximations of the temporal
mechanisms. It is a spatio-temporal extension of Teo and Heeger’s image distortion metric (see
Section 3.2.5) and implements inter-channel masking through an early model of contrast gain
control.

3.3.5 Perceptual Distortion Metric

Perceptual Distortion Metric (PDM), presented by Winkler [57], is a metric for both the digital
color images and video. It is based on a contrast gain model of the HVS, which takes into
account color perception, the multi-channel architecture of temporal and spatial mechanisms,
spatio-temporal contrast sensitivity, pattern masking and channel interactions, see Figure 17.
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Figure 17: Block diagram of the PDM model.

The metric requires both the reference sequence and the distorted sequence as inputs. Both
these sequences are converted to the opponent color space, where the color information is en-
coded as white-black, red-green and blue-yellow color difference signals. After the conversion,
each of the resulting three color components is subjected to a spatio-temporal filter bank de-
composition. Temporal mechanisms are simulated by the temporal low-pass filter and by the
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band-pass filter. The decomposition in the spatial domain is carried out by means of the
steerable pyramid transform [23]. This transform has the advantage of being rotation-invariant
and self-inverting while minimizing the amount of aliasing in the subbands. In the case of
the PDM, five subband levels with four orientation bands each plus one low-pass band are
computed. These perceptual channels are weighted according to contrast sensitivity and sub-
sequently undergo contrast gain control for pattern masking. Finally, the sensor differences
are combined into a distortion measure. The PDM was shown to accurately fit to psychophys-
ical contrast sensitivity and contrast masking data and to behave consistently with human
observation.

3.3.6 Non-Perceptual Metrics

Metrics based on multi-channel vision models are the most general and potentially the most ac-
curate ones. However, quality metrics need not necessarily rely on sophisticated general models
of the HVS; they can for example exploit a priori knowledge about the compression algorithm
and the pertinent types of artifacts using ad-hoc techniques or specialized vision models. While
such metrics are not as versatile, they normally perform well in a given application area. Their
main advantage lies in the fact that they often permit a computationally more efficient imple-
mentation. However, even some more universal non-perceptual metrics exist, two examples of
such metrics are the Universal Image Quality Index [53], and the recenty published Multidi-
mensional IQM using Singular Value Decomposition [44], see the thesis by S. Winkler [57] for
an overview.

3.4 Conclusions and Future Research

As we have seen, significant number of human vision models that could be applied to computer
graphics issues exists. However, particularly in the field of image comparison and image and
video quality assessment, there is still a lot of work to do.

• Most of the above mentioned approaches incorporate only a few of many factors that
influence human perception, i.e. typically just the luminance adaptation and the con-
trast sensitivity. Nevertheless, the perception of color by human visual system is a very
important task, for example it helps us to define the shapes in a perceived scene. Since
many of mentioned approaches have only been applied to binary or greyscale images,
little consideration has been given to the analysis of full-color images. Even in the field of
image segmentation, the development of segmentation algorithms based on color is still
incipient [7].

• Almost all of mentioned models are severely sensitive to shifts, dilatations, rotations, etc.,
inbetween the pair of input images. However, this does not correspond to the human
practice, where such a differences are not held so strictly.

• As most of perceptual image quality metrics are relative (full-reference) – they take the
reference image and the examined image as inputs, there is a lack of absolute (no-reference)
perceptual picture quality metrics.

• Contemporary perceptual image metrics typically consider the image as a whole. There-
fore, there is a lot of work in comparison of images with regions of interest (ROI), i.e.
the JPEG 2000 [47] ROI compressed images.

• What does the RMS error mean for 2D comparison, the METRO measure is in 3D.
However, not as much attention as to 2D perceptual comparison was given to perceptual
comparison of 3D models. Appropriate 3D error metric should involve HVS properties.
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• We suppose that more work could be done to extent or replace existing perceptual com-
parison techniques, to produce a more perceptually robust solution even for not strictly
photorealistic images.

• Nowadays, there are no agreed-upon standards for measuring the realism of computer-
generated images [12]. Sometimes physical accuracy is used as a criterion, at other times
perceptual criteria are applied, and under many conditions an ad-hoc ”looks-good” stan-
dard is used.

• Since the amount of contemporary quality metrics is considerable, evaluation and com-
parison of them becomes an important issue. However, only a few comparative studies
exist that have investigated the prediction accuracy of metrics in relation to others.

• So far, no general-purpose metric has been found that is able to replace subjective testing.

4 Perceptually Accelerated Rendering

Having in mind various approaches to modeling of human visual system, we can now explore how
human perception can be utilized to improve the performance of computer graphics rendering
methods. Principally, we can distinguish two types of approaches to acceleration of rendering.
The first possibility is to embed characteristics of human visual system directly into algorithms,
while the second option is to apply them on rendered images to drive the computation effectively.
This is an area where perceptually based quality metrics, summarized in Section 3, though
usually in a simplified form, take a place.

4.1 Embedding HVS Characteristics Directly Into Algorithms

A straightforward way to improve rendering computations is to directly embed some of simple
perceptually-based error metrics to the light interactions between surfaces. Such a metric is
evaluated densely during the computation so that it should be very simple and effective.

4.1.1 Perceptually-Driven Radiosity

Gibson and Hubbold [16] proposed a perception-driven hierarchical radiosity algorithm in which
a tone mapping operator and the perceptually uniform color space CIE L∗u∗v∗ are used to de-
cide when to stop the hierarchy refinement. Links between patches are not further refined once
the difference between successive levels of elements becomes unlikely to be detected perceptu-
ally. A similar error metric was applied to measure the perceptual impact of the energy transfer
between two interacting patches, and to decide upon the number of shadow rays that should
be used in a visibility test for these patches.

Martin et al. [33] proposed a similar strategy as Gibson and Hubbold. They use an oracle of
patch refinement that operates directly in the image space and tries to improve the radiosity-
based image quality for a given view.

4.2 Perceptual Metrics Operating on Rendered Images

All the techniques discussed in previous section used perceptual error metrics at the atomic
level, causing a significant overhead on procedures that are repeated densely. This imposes
severe limitations on the complexity of human spatial vision models, which in practice are
restricted to models of brightness and contrast perception [36]. Recently, more complete vision
models have been used in rendering to develop higher level perceptual error metrics which
operate on the complete images.
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However, the computation of complex vision models is typically very time-consuming. We
must therefore carefully consider whether the savings in computation that we obtain can com-
pensate this cost. For an extensive discussion of this issue in the context of various radiosity
methods, look at the thesis by J. Přikryl [40].

4.2.1 Perceptually Based Adaptive Sampling Algorithm by Bolin and Meyer

Bolin and Meyer [2] developed a perceptually based approach for selecting image samples.
They used the Sarnoff Visual Discrimination Model (described in Section 3.2.6) that has been
extended to handle color and has been simplified to run efficiently, see Figure 18.
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Figure 18: Block diagram of the vision model proposed by Bolin and Meyer.

The resulting new image quality model was inserted into an image synthesis program by first
modifying the rendering algorithm so that it computed a wavelet representation. In addition to
allowing image quality to be determined as the image was generated, the wavelet representation
made it possible to use statistical information about the spatial frequency distribution of natural
images to estimate values that were yet to be taken. The image quality model was also used
to decide when enough samples had been taken across the entire image, providing a visual
stopping condition.

4.2.2 Perceptually Based Physical Error Metric for Realistic Image Synthesis by
Ramasubramanian et al.

As we mentioned before, in some cases the cost of recomputing the vision model may cancel the
savings gained by employing the perceptual error metric to speed up the rendering algorithm.
To combat this Ramasubramanian et al. [41] introduced a threshold model that handles the
luminance-dependent processing and spatially-dependent processing independently, allowing
the expensive spatially-dependent component to be precomputed, see Figure 19.

The model for a given image produces a threshold map that predicts the maximum tolerable
luminance error. The luminance-dependent processing computes a starting threshold map
∆Ltvi for the luminance distribution using the threshold-vs-intensity (TVI) function. The
spatially-dependent processing computes a map containing elevation factors Fspatial for the
spatial pattern using the CSF and masking function. From these two maps the final threshold
map ∆LT (x, y) is derived as:

∆LT (x, y) = ∆Ltvi(x, y)× Fspatial(x, y).

The employed spatial decomposition is the same as in the visual discrimination model by Lubin
(see Section 3.2.6), however the visual masking model ignore spatial orientation channels.

The computed threshold map is used to predict the sensitivity of the HVS to noise in the
indirect ligting component of global illumination simulation. This enables a reduction in the
number of samples needed in areas of an image with high frequency texture patterns, geometric
details, and direct lighting variations, giving a significant speedup in computation.
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4.3 VDP Applications

Visible differences predictor by Daly (described in Section 3.2.4) was shown [34, 32] to be
valuable for such tasks as adaptive meshing performance, accuracy of shadow reconstruction,
convergence of the solution of illumination for indirect lighting, and so on. In this section we
will outline some of these applications.

4.3.1 Perceptual Convergence of Global Illumination Algorithms

Global illumination algorithms have different performance at different stages of computation.
Myszkowski [34] used the VDP to provide the quantitative measures of perceptual convergence
by predicting the perceivable differences between the intermediate and final images. Following
view-independent algorithms were investigated: deterministic direct lighting (DDL), shooting
iteration hierarchical radiosity (SHR), and density estimation photon tracing (DEPT) – direct
(DDEPT) and indirect (IDEPT) [34]. The performance of these basic techniques was measured
using the VDP.

The reported results show that the perceptual convergence of the indirect lighting solution
for the SHR technique is slower than the IDEPT approach. The SHR technique shows better
performance for simple scenes only. Moreover, at initial stages of computation, the DEPT
technique provides the best performance, and rapidly gives meaningful feedback to the user.
At later stages, the DDL+IDEPT hybrid shows faster perceptual convergence to the final image.
These results confirm that the examined algorithms have a different performance at different
stages of computation.

4.3.2 Hybrid Approach to Global Illumination

Based on the results described in previous section Volevich et al. [52] proposed a hybrid tech-
nique that uses DDEPT, IDEPT and DDL algoritms. The proposed technique aims to minimize
the perceived differences between the intermediate and final images as a function of time by
switching to the best candidate algorithm at every stage of computation. The switchover points
between the sequentially executed algorithms could not be measured on-line using the VDP
because of its enormous computational demands.

To overcome this problem a robust heuristic was proposed: for the sake of simplicity only
two switchover points T1 and T2 were used. The whole technique is summarized as follows:
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• The DEPT algorithm is used in the time interval [0, T1].

• The DDL algorithm is switched to at time T1.

• When the DDL computation have completed, the IDEPT algorithm is switched to refine
the indirect solution.

As the T2 point is obtained automatically by completing the DDL algorithm computation, the
only thing to assess is the T1 switchpoint. An experimental setting that was used to solve this
problem is outlined in Figure 20. Using this approach, the following solution was proposed:
first, the DEPT is run for time Tα = 0.1 Ti0, where Ti0 is the computation time of the first
iteration of the DDL. Than, the RMS error Ẽ of the indirect lighting simulation is estimated.
Finally, the required computation time Tthr to reach the accuracy level Ethr ≈ 15% is estimated
as Tthr = Tα

Ẽ2

E2
thr
, and the T1 is set to T1 = min(Tthr, Ti0). The heuristic was shown to provide

stable progressive refinement of rendered image quality.

4.3.3 Stopping Conditions for Global Illumination Computation

In algorithms that produce intermediate results rapidly (i.e. the hybrid approach in previ-
ous section) we are forced to use a HVS model off-line. However, for applications which re-
quire substantial computation time, embedding advanced HVS model might be profitable [36].
Myszkowski [34] used the VDP to decide the stopping conditions for global illumination com-
putations. Based on experimental practice it is assumed that the computation can be stopped
if the VDP does not report significant differences between intermediate images. The problem is
how to select an appropriate intermediate image which should be compared against the current
image to get robust stopping conditions.

The following solution to this problem was proposed: let the current image obtained after
the computation time T is =T and the VDP response for a pair of images =T and =αT is
V DP (=T , =αT ), where 0 < α < 1. Then we should find an α to get reasonable match between
V DP (=T , =αT ) and V DP (=C , =T ), where =C is an image for fully converged solution. It was
experimentally found that α = 0.5 provides a tight upper bound on the estimate of V DP (=C ,
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=T ). Therefore, if V DP (=T , =0.5 T ) is less than a specified threshold then we can stop the
computation.

4.4 Perception-driven Rendering of Animations

In this section we briefly summarize the Animation Quality Metric (AQM). The AQM is a
perceptual animation quality metric that was proposed and successfully applied to acceleration
of rendering of high-quality walkthrough animations. That is why we describe it here, although
it can certainly be used also to the assessment of video quality, which is concerned in Section 3.3.

4.4.1 Animation Quality Metric

Animation Quality Metric is a metric of animated sequence quality, which is specifically tuned
for synthetic animation sequences [36, 37]. Two comparison animation sequences are provided
as input to the AQM. For every pair of input frames the probability map PMap of perceiving
the differences between these frames is generated as output. PMap provides for all pixels the
probability values, which are calibrated in such a way that 1 Just Noticeable Differences (JND)
unit corresponds to a 75% probability that an observer can perceive the difference between the
corresponding image regions. The AQM takes into account the following characteristics of the
Human Visual System: the Weber’s law [39], spatio-velocity Contrast Sensitivity Function [9],
and visual masking. The spatio-velocity CSF requires the velocity value for every pixel, which
is aquired from the Pixel Flow (PF). The PF is computed for the previous and following frames
along the animation path in respect to the input frame, see Figure 21.
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Figure 21: Block diagram of the Animation Quality Metric.

The AQM was used to steer the global illumination computation in dynamic environments
for high-quality animation rendering. The global illumination solution was based on stochastic
photon tracing and density estimation techniques. A locally operating energy-based error
metric was used to prevent photon processing in the temporal domain for the scene regions
in which lighting distribution changes rapidly. A perception-based error metric computed by
the AQM was used to keep noise inherent in stochastic methods below the sensitivity level of
the human observer. As a result a perceptually-consistent quality across all animation frames
was obtained. Furthermore, the computation cost was reduced compared to the traditional
approaches operating solely in the spatial domain.

4.5 Conclusions

In this chapter we have focused on embedding the characteristics of the HVS directly into
various rendering algorithms to improve their efficiency. We have outlined various examples
of such an applications. Particularly the global illumination computations may gain much
by focusing computation on those scene features which can be perceived by human observer.
Nevertheless, we are still unable to perform global illumination computations at interactive
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frame rates. We suppose that the informed incorporation of human perception knowledge
may further help to achieve this appealing, but so difficult goal. There are several promising
directions of further research in the field:

• Creation of special vision models for shapes and materials.

• Finding the way how to differentiate between acceptable and disturbing rendering errors.

• Development of task based metrics tuned to a specific rendering algorithm.

5 Our Effort: Comparing Image-Processing Operators
by Means of the Visible Differences Predictor

Utilization of non-photorealistic techniques (NPR), see Section 5.1 for an overview, is beneficial
in many cases, in comparison with the use of traditional rendering methods in computer graph-
ics. The observer’s sensation is often straighter, clearer, or even more valuable. There exists
plenty of various NPR techniques in computer graphics, however application of one technique
to the specific problem is not necessarily as providential as usage of another one. There arises a
strong need to classify NPR techniques with respect to their applicability, to find a mechanism
able to compare NPR techniques automatically. Such a mechanism in not yet available and
the search for it will be a long term goal. In this section we present our first steps towards the
solution to this problem – the comparison of 2D-based NPR techniques using Daly’s Visible
Differences Predictor, described in Section 3.2.4.

Figure 22: Comparison of two input images using the VDP. From the left:
images obtained by Cutout and Paint Daubs techniques, right: colour visu-
alization of the map of detection probabilities.

5.1 Non-Photorealistic Computer Graphics

Contemporary computer graphics methods simulate synthetic scenes with ever-increasing real-
ism and complexity. With this ability comes a new problem of depicting and visualizing these
complex scenes in a way that communicates as effectively as possible. Thus, over the past
decade, a new area of endeavor has grew up – the non-photorealism, (or NPR [46, 20]), dealing
with the computer generation of images and animations that, generally speaking, appear to be
made in part ”by hand”. Such images often resemble those that, for example, architects, indus-
trial artists, or scientific illustrators produce to communicate more or less specific information,
see Figure 23. They are characterized by their use of randomness, ambiguity, or arbitrari-
ness rather than completeness and adherence to the portrayed objects’ properties. Recently,
there has been published significant amount of new NPR techniques from artistic screening
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methods for printing images using microdots with meaningful shapes that might deliver their
own message; to techniques for rendering images in pen-and-ink, watercolor, or engraved etch-
ings styles; to procedures for lighting and even distorting three-dimensional models in order to
clarify shapes or direct a wiever’s attention.

Several studies have shown that NPR methods allow us to emphasize or omit details in
order to communicate information more effectively [19]. For example, sketch rendered images
(one group of NPR techniques) of architectural scenes have shown better result in appreciation
between architects and clients, compared with that obtained through realistic rendering [45].

Figure 23: Comparison of traditional computer graphics techniques and the
technique of Gooch et al. [18].

5.2 Motivation

Not as much attention as to comparison of classical rendering methods was given to the compar-
ison of output images of NPR techniques. The existence of a general tool that would measure
the actual difference between two images with respect to their information content would be
strategic both for researchers, in the design of new rendering algorithms, and for users, to allow
them to compare the results of different NPR algorithms and to choose the NPR method that
best preserves the image semantics.

We assume the way towards the solution to this problem has two stages. The first stage is the
”low-level” perception stage that we partly address in this section by means of the Daly’s Visible
Differences Predictor. Second stage is the ”semantic-level” perception where the phenomena
like the meaning of a scene, semantics or context are treated.

5.3 Comparison of Image-Processing Operators by the VDP

Since the visualization by means of NPR techniques is commonly not used in cases where we
want to obtain image as close to the reality as possible, our problem has two stages. As we
already declared before, the first stage is the ”low-level” perception stage. In this section we
describe the insight in this stage via comparison by means of the VDP method.

The goal is to have a tool that will determine the most suitable technique for the given class
of objects. Suitability in our case means the lowest information loss typical for particular NPR
method. In such a way we can substantially improve visual communication with computer
systems.

32



5.3.1 Input scenes

We have compared all the techniques mentioned below on several typical input images. These
images included a natural photograph of a tree, a computer-generated bust, a classical radiosity
scene (cornell box), simple raytraced scene, and several other similar images, see Figure 24. The
radiosity scene contained soft shadows, while the raytraced scene encompassed only sharp-edged
shadows.

The images were of several resolutions around 640×480 pixels. The diagonal of the images
displayed on the CRT was about 0.2 meters, and we assumed, that images were observed from
the distance of one meter.

Figure 24: Input Images. Top left: Cornell box scene, top right: ray-tracing
scene, bottom left: photograph of a tree, bottom right: bust image.

5.3.2 Tested techniques

There exist notable amount and variation of current techniques in non-photorealistic rendering,
see Section 5.1 for an overview. With respect to make our results reproducible, we have used
image based techniques ordinary available with the program Adobe Photoshop 6.0, although
other possibilities are open [21]. We have investigated following 27 techniques divided into 7
groups:
brush Strokes: Angled Strokes, Crosshatch, Ink Outlines, Spatter,
sketch: Bas Relief, Graphic Pen, Chalk & Charcoal, Charcoal, Note Paper, Photocopy,
artistic: Colored Pencil, Cutout, Dry Brush, Paint Daubs, Poster Edges, Smudge Stick,
Sponge, Underpainting, Watercolor,
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stylize: Diffuse, Emboss, Find Edges,
other: Crystallize, Add Noise (12.5%), Pointillize, Sharpen, Smart Blur,
and certainly the unchanged original picture.

5.3.3 Comparison of the techniques

We compared the output image of every technique with the output image of every other tech-
nique, so we obtained V = n!

(n−k)! = 28!
(28−2)! = 756 variations of difference maps for each input

image (27 techniques plus the original image). For each difference map i we computed the
difference value D0.75(i).

For all of the techniques we obtainded 28 difference values. These difference values were
treated as a discrete difference fuction D0.75(i), where the variable i stands for a technique
ordered as in the section 5.3.2. These functions were plotted in planar and 3D graphs and
examined for correlations.

We quantified the differences between two difference functions D0.75(i), D0.75(j) by the ab-
solute metrics

ρ0.75(x, y) = max|D0.75(i)−D0.75(j)|,

where i, j denote technique i or j respectively.

5.4 Results

All of the results were depicted in 3D graphs, see examples of such graphs in Figure 26. Series
of investigated techniques ordered as in Section 5.3.2 are drawn on the X and the Y axes, while
the probability of difference detection between input images D0.75 is displayed as the elevation
on the Z axis.

Figure 25: ”Point-based” techniques applied on the Tree photograph. From
the left: Add Noise, Pointilize and Sponge technique.

Slices of these 3D graphs were used to depict data as ordinary planar charts and used to
inspect the results. On the horizontal axis the investigated techniques are depicted as in the
3D graph and similarly you may notice the gaps on depicted functions that separate groups of
NPR techniques.

5.4.1 Absolute values of differences

The difference of the original image and the image produced by some image-based NPR tech-
nique is typically considerable. Therefore the difference is easy to detect for an observer and
the absolute value of difference between images D0.75 is high. This is perfectly true for Ink
Outlines technique. The probabilities of the difference detection always exceed 82%, see the
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Figure 26: Differences D0.75 between all images produced by all inspected
NPR techniques depicted as the 3D graph, for the Cornell box (left) and the
Bust (right) input scene. Note the lines of red peaks – almost constalntly
high absolute values for the Ink Outlines and Note Paper methods.

upper function in the left Figure 27. We have observed such a characteristic for any of input
images, because Ink Outlines technique changes the input image massively and the difference
is therefore straightforward.

Very high difference values were observed also for methods Bas Relief, Graphic Pen, Note
Paper and Pointilize. Arithmetical averages of the difference values Davg = 1

28

∑28
i=1D0.75(i) for

these methods are recorded in the Table 1. For example the Davg = 90% means for particular
technique that in average case a human oberver is able to distinguish 90% of the image area
when comparing to the image obtained by another technique.

Ideed the distribution of probabilities of difference detection strongly depends on compared
techniques. See Figure 29 where probability maps for two pairs of techniques are depicted.
Pixels with absolute value of probability detection lower than 0.5 are displayed green while
pixels with higher values are in reds.

For the synthetic images the absolute values of the differences were generally lower than for
the photos. This is due to the fact that some of the technique’s naturally added distortions are
not exerted for the synthetic images.

Technique Davg[%]
Ink Outlines 99.996
Bas Relief 99.461

Graphic Pen 96.391
Note Paper 94.753
Pointilize 89.761

Table 1: Average values of differences for selected techniques.
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Figure 27: Absolute values of the differences D0.75 between images for Brush
Strokes group of techniques compared with all the other techniques, for the
Bust (left) input image and the Tree (right) input image. Note the upper
curve for the Ink Outlines technique that does not correlate with the others.
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Figure 28: Coherences of techniques Emboss, Colored Pencil, Photocopy,
Bas Relied and Charcoal for the Cornell box (left) and Ray-traced (right)
input image.

5.4.2 Coherences

Consecutively, we have investigated the coherences between the tested techniques to be able to
classify them. Coherences between discrete functions D0.75(i) were examined using previously
defined absolute metric ρ. This metric was evaluated for each pair of functions D0.75(i), D0.75(j)
and was depicted as an ordinary planar graph. Below, we consider as coherent all of the cases
when the absolute value of difference ρ does not exceed the 5% threshold.

General Coherences

We observed a strong coherence for following groups of techniques:
1) Diffuse, Dry Brush, Original, Sharpen, Smart Blur,
2) Noise, Pointilize, Sponge,
3) Colored Pencil, Crystalize, Paint Daubs, Photocopy, Spatter.
These coherences were independent on the type of the input image. Average values of ρ for
several pairs from these groups are recorded in Tables 2.

Just mentioned groups reflect our vague knowledge of common properties of the given tech-
niques. In the group 1 there are techniques that do not distort the image too much, they are
just ”improving” the input image in some sense. Group 2 consists of ”point-based” techniques,
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Figure 29: The map of probabilities for comparison of Crystalize and Graphic
Pen (on the left) and for comparison of Bas Relief and GraphicPen (on the
right) techniques visualized in the same colours as in the project [35]. Cornell
box input scene.

see Figure 25. Finally, in the group 3 there are techniques producing similar ”shake” distortion.

Coherences between the groups of techniques

In the scope of the groups of techniques (brush strokes, sketches, artistic effects, stylize, other
techniques) we primarily expected good coherences between techniques. There is sometimes
noticable correlation of the results, see for instance the chart on the left Figure 27. However,
generally we have noticed good coherences only in the group of schetches (after excluding the
Note Paper method), where the average values of ρ do not exceed 6%. In the other groups
there are no conspicuous coherences between apropriate techniques, see the right Figure 27.

Coherences dependent on type of input image

Apart from general-valid coherences described above, we found also the other group of coherent
techniques dependent on the type of the input image. We have observed that for synthesised
images with uniform-colored faces there is a good coherence between Emboss, Colored Pencil,
Photocopy, Bas Relief, and Charcoal techniques. This is especially distinctive in the case
of the Cornell box scene, where these techniques produce similar edge enhancement. The
graphs in Figure 28 exhibit the coherence between the mentioned techniques. Note the minimal
differences in the first and third parts of the charts, that represent very good coherence with
the Brush Strokes and Artistic groups respectively.

5.5 Conclusions

In this section we have described our first steps towards finding a mechanism which would be
able to automatically compare NPR images. We have investigated the properties of the images,
obtained by various image-processing techniques, using the Visible Differences Predictor.

We have shown that by such a low-level mechanism like the VDP is (from the point of view
of the complexity of the human perception of the NPR images) we are able to distinguish some
of the naturally vague defined groups of images with similar properties.
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Group 1)

Technique–Technique ρavg[%]
Original–Smart Blur 0.5799

Original–Diffuse 2.639
Dry Brush–Sharpen 4.949

Group 2)
Noise–Sponge 1.025

Pointilize–Noise 3.897
Pointilize–Sponge 4.346

Group 3)
Color Pencil–Photocopy 3.206

Spatter–Crystalize 0.9
Crystalize–Paint Daubs 4.772

Table 2: Average values of ρ for selected pairs of techniques.

Next, we have observed that the absolute values of differenecs are inherently high for most
techniques and that these values are generally lower for synthetic images than for the pho-
tographs. However, it is evident that the VDP-like mechanisms are just a first stage in the field
of comparing of the NPR techniques. NPR techniques are often utilized in such cases where we
want to highlight fundamental information content of the image, which principles of ”low-level”
perception are unable to catch.

In the future, we will carry on psychophysical experiments on human observers in order to
validate the presented results. We also intent to compare our results with another algorithms
describing the human visual response, and especially we want to interpret our knowledge in
the context of the work of Duke et al. [11] to design an algorithm, the result of which will
correspond with ”semantic sensation” of a human observing a NPR image.

6 Conclusions

In this report, we have summarized physiological and perceptual properties of the human visual
system. Human perception is a complex process of obtaining knowledge of visual environment,
which has many specific properties. Atlhough not yet fully understood, we have shown that it
can be and recently really was successfully applied to various issues of computer graphics. In
computer graphics, the perceptual knowledge usually takes the form of human vision models.
We have described various HVS models and concentrated on their applications to the image
and video quality assessment and comparison. We have outlined merits and shortcomings of
these HVS models and we have given several suggestions for the future research. Relevant
ideas from the image assessment field were applied to the acceleration of computer graphics
rendering. We have given an overviewed of these applications. Finally, we have outlined the
way to overcome some drawbacks of contemporary approaches to the image comparison.
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8 Dissertation thesis

Title: Perceptually Based Image Quality Assessment

Abstract
The aim of dissertation is to develop a general model for perceptual image quality assessment

to overcome the limitations of contemporary approaches that are insufficient when processing
other than photorealistic inputs. The model will exploit the knowledge of human visual system,
and the information contents of the input image. Intended approach has many applications
that are not only limited to the image comparison and assessment of image quality. It could
be used to compare the perceptual impact of different rendering algorithms, or to analyse the
effect of various acceleration techniques. The second objective of the dissertation work is the
utilization of the perceptual assessment model in the rendering algorithms. The output of a
model will be used as a feedback to a rendering algorithm for iterative steering the quality
of the rendered image. Whereas the accuracy of a common error metric can be verified by
instruments, the only way to measure accuracy of a perceptually based metric is to see how
well observers perform in visual tasks. The third aim of the dissertation work is therefore the
execution of subjective verification tests.

Keywords
computer graphics, human perception, human visual system, image quality, vision models,

image comparison, acceleration of rendering, image processing
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A Image Pyramids

When we need to work simultaneously with various image resolutions, it is useful to utilize image
pyramids. Image pyramid is a powerful, but conceptually simple structure for representing
images at more than one resolution [4]. It is a collection of decreasing resolution images arranged
in the shape of a pyramid. The base of the pyramid contains a high-resolution representation
of image being processed, the apex contains a low-resolution approximation. As we move up
the pyramid, both size and resolution decrease, see Figure 30.

Figure 30: Nine levels of the Gaussian pyramid for the ”Cornell box” image.
The original image is the leftmost, each higher level array is roughly half
the dimensions of its predecessor.

When the base level J is size 2J × 2J , where J = log2N , intermediate level j is size 2j × 2j ,
where 0 ≤ j ≤ J . Fully populated pyramids are composed of J + 1 resolution levels up to
20 × 20, but most pyramids are truncated to P + 1 levels, where 1 ≤ P ≤ J . The total number
of elements in a P + 1 level pyramid for P > 0 is

N2
(

1 +
1

(4)1
+

1
(4)2

+ · · ·+ 1
(4)P

)
≤ 4

3
N2.

Both the original image, which is at the base of the pyramid, and its P reduced resolution
approximations can be accessed and manipulated directly. The creation of the next level of a
pyramid from an input image is composed of three sequential steps [17]:

1. Compute a reduced-resolution approximation of the input image. This is done by filtering
the input and downsampling the filtered result by factor of 2. A variety of filtering oper-
ations can be used, including neighborhood averaging, which produces a mean pyramid,
lowpass Gaussian filtering, which produces a Gaussian pyramid, or no approximation,
which results in a subsampling pyramid.

2. Upsample the output of the previous step – again by a factor of 2 and filter the result.
This creates a prediction image with the same resolution as the input. By interpolating
intensities between the pixels of the Step 1 output, the interpolation filter determines
how accurately the prediction approximates the input to Step 1.

3. Compute the difference between the prediction of Step 2 and the input to Step 1. This
difference, labeled the level j prediction residual, can be later used to reconstruct progres-
sively the original image.
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Executing this procedure P times produces two intimately related P +1 level approximation
and prediction residual pyramids. If a prediction residual pyramid is not needed, Steps 2 and
3 can be omitted.

B Multiscale Transforms

This section presents a brief introduction to a series of multiscale transforms that are widely
applied to signal and image processing [7]. In general, signal analysis by using a multiscale
transform is characterized by the following elements. A signal u(t) presents a set of features
and structures occuring at different spatial scales. This signal is to be analyzed by a multiscale
transform U(b, a) involving two parameters: b, associated with the time variable t of u(t), and
a, associated with the analyzing scale. The scale parameter a is usually related to the inverse
of the frequency f , i.e., 1

a
∼= f, leading to a dual interpretation of these transformations and

suggesting the terms time-scale and time-frequency.
Many different multiscale-based signal analysis frameworks can be summarized by the Algo-

rithm 1.

Algorithm 1: Typical Multiscale Analysis
(1) Obtain the signal u(t) to be analyzed
(2) Calculate the multiscale transform U(b, a) of u(t)
(3) Extract the important scale characteristics of u(t) from U(b, a)

The scale-space approach to multiscale signal analysis is one of the most popular multiscale
methods. The scale-space of a signal allows tracking its singularities (or of one of its derivatives)
through the scale dimension. This fits to conjecture by Marr that the perceptually important
dominant signal points correspond to singularities remaining along longer scale intervals. The
scale space is defined as follows.

Definition 1 Let u(t) be the signal to be analyzed, g(1)
a be the first derivative of the Gaussian

function ga(t) and U (1)(t, a) = u(t) ∗ g(1)
a (t). Let

{
U (1)(t, a0)

}
zc

denote the zero-crossings set of

U (1)(t, a0). The scale-space of u(t) is defined as the set of zero-crossings of U (1)(t, a), i.e.{
(b0, a0)|a0, b0 ∈ R, a0 > 0, and b0 ∈

{
U (1)(t, a0)

}
zc

}
The term scale-space is sometimes also used for U(t, a), obtained by the convolution of the
signal with a series of Gaussians. In general, the extrema of U (n)(t, a) can be defined from the
zero-crossings of the scale-space generated by gn+1

a (t).
The time-frequency transforms have originated as an alternative to Fourier analysis capable

of signal local analysis. Fourier transform has engaging properties, but it operates on the whole
signal. The short-time Fourier transform has been defined as an attempt to circumvent this
problem by introducing an observation window aimed at selecting a signal portion during the
transform. The following transform was defined from the Fourier equation:

U(b, f) =
∫ ∞

−∞
g∗(t− b)u(t) exp(−j2πft)dt,

where g(t) is the window function that slides over the signal u(t). Time-frequency analysis is
based on the above considerations, and one of its most important tools is the Gabor transform,
i.e., the short-time Fourier transform where g(t) is a Gaussian window.
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The time-scale transform (or modernly the wavelet transform) faces the following problem:
high-frequency events frequently occure along short time intervals while low-frequency com-
ponents remain longer during the signal evolution. The application of the short-time Fourier
transform has the drawback that the analyzing window size is the same for all frequencies.
Therefore, in the wavelet transform the kernel size varies with the frequency, allowing high-
frequency events to be localized with better time resolution, while low-frequency components
are analyzed with better frequency resolution. This property is known as relative bandwidth or
constant-Q. The continuous wavelet transform is defined as:

U [ψ, u](b, a) = Uψ(b, a) =
1√
a

∫ ∞

−∞
ψ∗

( t− b

a

)
u(t)dt.

In the case of the Morlet wavelet, the Gabor transform and the so-called Gabor wavelets [25],
the transform presents a strong and interesting biological inspiration (i.e. the receptive fields
of neural cells involved in visual processing).
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