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1) INTRODUCTION TO HDR
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Luminance (1)

= Physically:
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Luminance (2)

= | uminance

In color science: weighted sum of linear RGB
" Y=0.2126 R+ 0.7152 G + 0.07/22 B

= Luma

Weighted sum of gamma corrected (nonlinear) RGB
" Y'=0.2126 R"+ 0.7152 G' + 0.0/22 B'
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Various Dynamic Ranges (1)
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Various Dynamic Ranges (2)
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High Dynamic Range

HDR Image
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Usual (LDR) Image
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Measures of Dynamic Range

Contrast ratio CR=1":(Ypeak!Ynoise) displays

(e.g., 1:500)
Orders of M =10910(Ypear)10910(Y noise) HDR imaging
magnitude (= 2.7 orders)
Exposure latitude L =109,(Ypear)-1092(Ynoise) photography
(f-stops) (= 9 f-stops)
Signal to noise SNR = 20%1091o(Apeak/Anoise) digital cameras
ratio (SNR) (= 53 [dB))
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HDR Pipeline
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1.1 Overview

= Capture of HDR images and video
HDR sensors
Multi-exposure techniques
Photometric calibration
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HDR: a normal camera can't...

106 104 102 1007 102

= [inearity of the CCD sensor
= bound to 8-14bit processors
= saved in an 8bit gamma corrected image
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HDR Sensors

10_6 10_4 10'2

= |ogarithmic response
= |ocally auto-adaptive
= hybrid sensors (linear-logarithmic)
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HDR Using Multiple Sensors

= semi-transparent mirror
/prism

= multimple sensors with
different sensitivity

= Panoscan Marks3,
SpheronVR (scanning
panoramic cameras), HDR
video, HDR-Cam, etc.
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Multi-exposure Technigque (1)

X pfsview: .. Schloss/photos/example_hdr hdr RELATIVE) |~ (01Jd

Frame View Help
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Photometric Calibration

= Converts camera output to luminance

requires camera response,
and a reference measurement for known exposure
settings
= Applications
predictive rendering
simulation of human vision response to light

common output in systems combining different
cameras
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Photometric Calibration (cntd.)

acquire
target
>
camera output
values
1 — T T r T
| . 08 /__/""’/ “
uminance s
values o ~ ’ i
> 04 Y = —
02 F -
0F ) l X , ) -
-4 -2 0 2 4

cameraresponse

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz #17



1.2 Overview

= Tone Mapping of HDR images and video
Early ideas for reducing contrast range
Image processing — fixing problems
Alternative approaches
Perceptual effects in tone mapping
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HDR Tone Mapping
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= QObjectives of tone mapping
really application dependent...
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Objective of Tone Mapping

Aesthetical Cognitive Perceptual
[Cadik et al. 06]
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Large choice of Tone Mapping Methods

) Evaluation of Tone Mapping Operators - Martin Cadik - Mozilla Firefox
Fle Edt View Hitory Bookmarks Tools Help

Ob-c xa /(= ot 7B -] [Wel v 2 5
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icdrom/

Drago, F., Myszkowski, K., Annen,

T., Chiba, N.

Adaptive Logarithmic Mapping
For Displaying High Contrast
Scenes

| http:/www-cg.cis.iwate-u.ac.jp
iclogmap/
5 VAILABLE
Tumblin, J., Turk, G.

Low Curvature Image
Simplifiers (LCIS): A Boundary
Hierarchy for Detail-Preserving
Contrast Reduction

http:/www.cs.northwestern.edu
p

E
M. Ashikhrnin

A tone mapping algorithm for
high contrast images

http:/www.cs.sunysb.edu/~ashitm/
Fredo Durand, Julie Dorsey

Fast bilateral filtering for the

display of high-dynamic-range

images

http:/igraphics.csail.mit.edu/~fredo
LI/Siggraph2002/

CODE AVAILABLE

Sumanta N. Pattanaik, Hector Yee

Adaptive Gain Control for High
Dynamic Range Image Display
i CODE AVAILABLE

Choudhury, P., Tumblin, J.

The Trilateral Filter for High
Contrast Images and Meshes

http:/www. cs. northwestern.edu

Raanan Fattal, Dani Lischinski,
Michael Werman

Gradient Domain High Dynamic
Range Compression

http://www.cs.huji.ac.il/~danix/hdr/

53

v

http://cadik.posvete.cz/tmo/
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General Principle
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General Ideas

= Luminance as an input
absolute luminance
relative luminance (luminance factor)

= Transfer function
maps luminance to a certain pixel intensity
may be the same for all pixels (global operators)
may depend on spatially local neighbors (local operators)
dynamic range is reduced to a specified range
= Pixel intensity as output
often requires gamma correction
= Colors
most algorithms work on luminance
= use RGB to Yxy color space transform

= inverse transform using tone mapped luminance
otherwise each RGB channel processed independently
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2) HDR IMAGE AND VIDEO
QUALITY ASSESSMENT
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HDR Pipeline

= Viewing
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2.1 Overview

= Introduction to Objective Quality Assessment
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FR Quality Assessment (IQA, VQA)

+ Reliable - High cost
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Full-Reference Image Quality Metrics

V=i

reference FR
IQM

localized
distortion map
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Full-Reference Metrics

= What are they good for?

Quality assessment scenarios in
compression/transmission, etc.

Algorithm analysis/validation/evaluation
Guiding/ parameter estimation of renderers

Stopping criterions
Speed/ quality enhancements
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Math-based FR Metrics

= AD M = |ref — test|
O (R)MSE M = (ref — test)? MSE = %Z(refi — test;)?
= PSNR PSNR = 10 logo M4%°

MSE

* SCORREL M = SRCC(ref, test)

(Spearman's rank correlation coefficient per block)

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz #30



Simple Full-reference Metrics

R ik
Reference Random Noise

Decreased
Luminance

MSE = 280 MSE = 280 MSE = 280 !
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2.2 Overview

= Image Quality Assessment
HVS-based Metrics (bottom-up)
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HVS Based Metrics

Random Noise

Y Decreased
Luminance

Probability of Detection: L

25%  50% 75%  95%  100%
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Human Visual System

= Physical structure

well established
(early vision)
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= High-level vision
still not fully understood
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Human Visual System (cont.)

= CSF

— specifies the sensitivity
(1/detection threshold)
as a function of the
spatial frequency

— depends on
= spatial frequency
-adaptation evel [ S I D[R
= temporal freq. [Campbell and Robson 1968]
= orientation
= viewing dist
= eccentricity, ...
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Contrast Sensitivity Function (CSF)

= Steady-state CSF>

Incl. adaptation
luminance

Sensitivity
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HVS — Visual Masking
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Visual Masking

Loss of sensitivity to a signal with the presence of a “similar”
signal “nearby”.
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Modeling Visual Masking

= Example: JPEG's
pointwise extended
masking:

. 0.
[] Masked coefficent Szg{n’ (C,) ‘ O, ‘ °
@ Intra-channel neighborhood - (1 _|_ ZK ‘C}; ‘0.2)

[J Inter-channel neighborhood

- . - C’: Normalized Contrast
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Modeling Visual Masking -
Visual Channels Cortex Transform

90’ 60’
30
-30°
90 -60°
H—
cycles per pixel 0 0.25 0.5
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Error Sensitivity Based Approaches

= General framework

—— o ————

Reference _ | Pre- | ICSF | Channel : Error Error
signal processing |  Filtering ' | Decomposition | | Normalization [\\] Pooling
: ! l - |and Masking |:
Distorted : /

. —» —>

signal ] : N

. Quality/
Distortion
Measure

= Visible Differences Predictor [Daly93]

= Perceptual Distortion Measure [Teo, Heeger 94]

= Visual Discrimination Model [Lubin 95]
= Gabor pyramid model [Taylor et al. 97]
= WVDP [Bradley 99]

= HDRVDPZ2 [Mantiuk et al. 05, Mantiuk et al. 11]
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Error Sensitivity Based Approach
= Visible Differences Predictor (VDP) [Daly 93]

Reference | Amplit. Cortex Maskin
mage Nonlin. Transform| | Function
¥

Mutual 2 c O

Masking S| |28 = O

2.9 gt % g — N §

S = 0

=S| |8E| |20

Q (L o o S

Distorted | Amplit. | csE  |Cortex || Masking
Image Nonlin. Transform| | Function

= Threshold sensitivity
= Early vision modeling
= Visual Masking
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2.2 Overview

= Image Quality Assessment

Structural Similarity (top-down)
Data-driven Approaches (top-down)
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Structural Similarity-Based Approaches

Signal x

Signal y

= UQI [Wang 02]

= SSIM [Wang 04]

= M-SSIM [Wang et al. 04]

Y ON-1

1 —w
'u:ﬁzz‘:lxi
Luminance (1 ZT“
Measurement ] 0. _kN_lLf\%‘_“x) !
D Contrast Luminance
+/ Measurement Comparison
Contrast Combination L Similarity
| Luminance Comparison Measure
| Measurement ]
D Contrast Structure
+\/ Measurement Comparison
O :LZL()Q — 1), _/uy)

= Multidimensional Quality Measure Using SVD
[Shnayderman 04]
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Superwsed Learning — Training Phase

fraining image set

o
o
o
E b ¥ ! | " [ .
i [ e = 1 EE , s [
¥ £ ” g B 2 — - PO "
o e ¥ { i % H # Tt F
{ s Asn, \
- -y Sk —ran i ;
= " ‘| A4 - 1 b p 1 -
- - : e i B g &, % % ; 1 -
S 1 e 1 Fes o P | % . ¥
e BAS = p i (e G
ettt dad. v - ¥ . /
' |- b - b B . 4
| \J '\ L
3 e e b ! =

labels featture @ﬂ.:@ﬁ’ﬂ[p)ﬁ@[r@

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz #47



Supervised Learning — Prediction

tested image pair

= NoRM [Herzog et al. 12]
= LPLD [Cadik et al. 13]
= |mage completion metric [Kopf et al. 14]
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No-Reference Image Quality Metrics

Detecting blockiness in JIPEG/MPEG
= [Wang & Bovik '06, Wu & Rao ‘03]

Blurriness measure
= [Liu et al. SPIE '11, Chen et al. SPIE "11]

Detection / removal of false contours
(color quantization)
= [Daly S. & Feng SPIE '04]

Natural image statistics no-ref. QA
» [Sheikh et al. ‘05, Jpeg2000]

—> 4.2

“Real” no-ref metric
* NoRM [Herzog et al. 12]



NoRM: No-Reference Metric

[Herzog et al. 2012]

= |nput: distorted image/video frame (no reference)
= Qutput: map of distortions (possibly perceptually weighted)
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Data-Driven No-Reference IQM

— Feature descriptors (various information available)

— Distortion maps (possibly real subjective data)
— Depth + 3D related information
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Data-Driven No-Ref. IQM

" Peiniiedigsniiseid) (rasas sRAION available)

— Traditional metrlcs ust a number on scale 1-5
m ybjective data)

« REIFARNIRD

— De mn@@rmueed mformatlon

. we have 3D data!!!
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System Pipeline NoRM

Data Preparation Training : Prediction Artifact Image QM
Correction
Input set Selected artifacts ¢ Sample locations : New test image Training pairs Pseudo reference
: o
A Descriptors +:
labels

> Inpainting
4

5 Perceptual J

Normalization

Extract

N
Predict
local 3D .
) artifact
features Train

Classifier
(trained)

Classifier
(SVM) } >

Reference pairs  User scribbles
Predicted artifact

<

Multi-scale Perceptual artifact

lighting, material, probability strength
depth images
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Training Classifier

= Given input data:
color, depth, material for one artifact type
user scribbled artifact mask
reference image without artifacts
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Rendering Output — Classification Input

e Vatoas
HDR (LDR) color image depth buffer
(may contain noise) (in high precision, no noise)

diffuse texture buffer



Computation of Additional Input Data

textures depth

color (pixel radiance)

surface normals
(computed from depth)

lighting (irradiance)



Feature Descriptors

= Tested several “standard” features

= Color-features from computer vision
Histogram of oriented Gradients (HoG)

Frequency domain features (DCT)

Difference of Gaussians (DoG)

Local first-order statistics Cropped block DCT coeff,

= Plus 3D features given depth
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3D Features: Local First-order Statistics

= compute mean, variance, skewness, kurtosis in each segment at

different scales of the grey-scale image pyramid (also for depth,
normals)

” s

Tramme Martin Cadik, http://cadik.posvete.cz #59




3D Features: Ambient Occlusion

= given depth extract approx. ambient occlusion per pixel
(distance to nearest occluder)

v N
I'=

.}\%\! ,\K(
~ s

/‘

screen-space ambient
occlusion (SSAO)
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REFERENCE IMAGE




IMAGE WITH ARTIFACTS




Results (VPL noise)

Subjects (NO REF) Our Result (NO REF) SSIM [Wang et al. ‘04] — (REF)

corr=0.6/74

HDRVDP2 [Mantiuk et al. “11] - (REF)  Subjects (REF)

corr=0.725 corr =0.903

Artifact Image
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Results (VPL noise)

Subjects (NO REF) Our Result (NO REF)

corr =0.436 (0.298) corr = 0.469

SSIM [Wang et al. ‘04] — (REF)

HDRVDP2 [Mantiuk et al. “11] - (REF)  Subjects (REF)

corr=0.913

Artifact Image

corr = 0.495
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Results (VPL clamping)

Subjects (NO REF) Our Result (NO REF) SSIM [Wang et al. ‘04] — (REF)

corr=0.637

HDRVDP2 [Mantiuk et al. “11] - (REF)  Subjects (REF) Artifact Image

corr=0.134 corr=0.186
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Results (Shadow aliasing)

Subjects (NO REF) Our Result (NO REF) SSIM [Wang et al. ‘04] — (REF)

corr=0.767 (0638) corr=0.742

HDRVDP2 [Mantiuk et al. “11] - (REF)  Subjects (REF) Artifact Image

corr =0.669 corr=0.772
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FR Data-driven IQM (LPLD)

= [Cadik et al. 13]

= SL=ensembles of bagged decision trees
t=20 trees, avg. depth=10

= 10 best features ranked by feature selection

= LOCCG dataset for training

= Advantages
Computer graphics content
Many distortion types
Superposition of distortions
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LPLD — Performance

= Metric performance — ROC analysis
LOCCG dataset — leave one out cross validation
Compared to 7 state-of-the-art IQM

rue positive rate

— — — rand

SSIM

MS-SSIM
AD
sCIE-Lab
— — — sCorrel
NoRM

0 L I
0 0102030405060.70.809 1

Training School - Brno, Czech Republic, COST, 5 October 2014

newMetric

HDR-VDP-2|

False positive rate

Matthews correlation

0.6

0.4

0.2

0

D.8F -

2 A R S S S S S
0 0.10.203040.5060.70.80.9 1

True positive rate
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LPLD — Results (LDR)

ground-iruth new meltric SSIM HDR=VDP=2

ground-truth new metric SSIM  HDRVDP-2
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2.2 Overview

= Introduction to Objective Quality Assessment

= Image Quality Assessment
— HVS-based Metrics (bottom-up)
— Structural Similarity (top-down)
— Data-driven Approaches (top-down)
— HDR IQM

= Video Quality Assessment
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HDR vs. LDR

Luminance

Luminance

LDR HDR
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Dynamic Range Independent IQM (DRIM)

Training School - Brno, Czech Republic, COST, 5 October 2014

Martin Cadik, http://cadik.posvete.cz

[Aydin et al. 2008]

Key Idea: Instead of
the traditional contrast
difference, use
distortion measures
agnostic to dynamic
range difference

Result: An IQM that
can meaningfully
compare an LDR test
Image with an HDR
reference image, and
vice versa

Enables evaluation of
tone mapping
operators
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Distortion Measures

HDR

LDR

] Contrast Loss
I C. Amplification
I C. Reversal
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DRIM

Test
image

Reference
image

Contrast Cort
detection —» ¢ 0 fex
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Contrast
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Y

Loss of
visible contrast
predictor

Amplification of
nvisible contrast

predictor

Reversal of
visible contrast
predictor

AL
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y
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Band filter

Band filter

Band filter

Y

Y

Y

Visualization of structural changes

Contrast detection predictor

Optical
transfer
function

Photoreceptor
Nonlinearity

Neural
CSF
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l Distortion map

http://metrics.mpi-inf.mpg.de/
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DRIM — Results

Local Gaussian Blur

ﬁf«

AN

HDR Reference LDR Test

Training School -

Brno, Czech Republic, COST, 5 October 2014

Martin Cadik, http://cadik.posvete.cz

Detection Probability

95%

75%

50%

25%
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DRIM — Limitations

= Grayscale
= not very accurate
= +/- user interface (http://metrics.mpi-inf.mpg.de/)

Dynamic Range Independent Metric Online
Interactive viewer

Opacity Control (%) Frobabil

cales (%)

STEP 1. SELECT IMAGES TO COMPARE
Suppaortzad image formats: *jpg, *.png, *.bmp, *.gif, *.exr, * hdr a»
HOR imai
The

edin ca/m’ exposure time {lang — short),

5 must lib

um file

Test image Refarence image

| Browss... Browss...

Adding Poisson noise

stim a1 7 g _ p12x 768 (wxh
Testimag Ratio of noise (%)

format. * png



http://metrics.mpi-inf.mpg.de/

HDRVDPZ2

= [Mantiuk et al. 11]
Matlab code available http://hdrvdp.sourceforge.net/
Online version: http://metrics.mpi-inf.mpg.de/
opencl GPU implementation coming soon

Carefully calibrated with experimental data

= New CSF measurements
= LIVE, TID2008

Chromatic CSF
Steerable pyramid

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz H#T7


http://hdrvdp.sourceforge.net/
http://metrics.mpi-inf.mpg.de/

HDRVDPZ2

Test image Reference image
v v
Optical & retinal Optical & retinal
pathway pathway
Multi-scale Multi-scale
decomposition decomposition
I:)map! I:,det
—> Visibility metric —>
Neural noise
(nCSF + masking) Q. Q
——>( Quality metric F—> "°°
Limitations
= grayscale

= slower than SSIM
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Tone Mapped image Quality Index (TMQI)

500

= [Yeganeth and Wang 13] i brightness==mean
Matlab code available K -
https://ece.uwaterloo.ca/~z
/0wang/research/tmaqi/
FR IQM for tone mapped e
Images ZZ o gonf[ra_st::standard
very simple 5001 N\ eviation

ol I\

multiscale SSIM o ?f \ﬁ\%\,

measure of naturalness 7 TR T S—

based on statistics of natural images [Cadik, Slavik 05]:
brightness, contrast most important - statistical model of naturalness
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https://ece.uwaterloo.ca/~z70wang/research/tmqi/

TMQI - results

overall quality, distortion maps for each scale

limitations
= Grayscale, +/- dubiously simple ©

[Fattal et al. 02] [Mantiuk et al. 08]
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TMQI - results

¢,

/A

[Mantiuk et al. 08]

- [Fattal et al. 02]
S
(R
\f:/./




Applications in HDR

Tone Mapping Inverse_ Displa_y
Tone Mapping Analysis
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2.3 Overview

= Introduction to Objective Quality Assessment

= Image Quality Assessment
— HVS-based Metrics (bottom-up)
— Structural Similarity (top-down)
— Data-driven Approaches (top-down)
— HDR IQM

= Video Quality Assessment
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Dynamic Range Independent VQA

= [Aydin et al. 2010]

= Key ldea: Extend the
Dynamic Range
Independent pipeline
with temporal aspects
to evaluate video
seguences

= Result: An objective
VQOQM that evaluates
rendering quality,
temporal tone
mapping and HDR
compression
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Contrast Sensitivity Function

» CSF: w,p,L,— S

—
r

w: temporal frequency, 2
p: spatial frequency, g
. 20
L_: adaptation level, o
N
S: sensitivity. g oo
g100
% 1
KOS . :329\
e o1 © queno‘i ey
HC%GC] spaua\

Spatio-temporal CSF
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Contrast Sensitivity Function

= CSF: w,o,L,— S

—
r

w: temporal frequency, 2
p: spatial frequency, g
. n -
L_: adaptation level, 3
S: sensitivity. 2 0ot
g100
%
m 100
pOra/ wmeg\
) 0.1 _ QU
Vi CJ//-S‘@c] 593“&\ ©

Spatio-temporal CSF'
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Contrast Sensitivity Function

= CSF: w,p,L,— S
w: temporal frequency,
o spatial frequency,
L_: adaptation level,
S: sensitivity.

Sensitivity

Steady-state CSF>
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Contrast Sensitivity Function

CSF(w,p,L,=L) CSFT(w,B.8FH a0 cd/m2)

R 555 :3‘\“\
KTRKE
ol {.‘,o,o'{:,;c il

(X1

CSFS(p,L,)  CSFS(p,100 cd/m?)

-

< f
“““\ >
pad “ "v-“
— . | ] ..-"‘i\-“‘“\\
A\ i
— ) [ = ,,..'-\-\'\\\\‘3\\\_\““;\\\\\‘
AT
" AN
P/
‘(\“

L, = 100 cd/m?
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Extended Cortex Transform

Filter Response

0 50 100 150 200 250 300 350 400 450 500
Time [ms]

Sustained and Transient
Temporal Channels [Winkler 2005]

Spatial
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Comparison: Test Scene

= HDR Scene tone
mapped with
[Pattanaik 2000]

= Spatio-temporal
distortion

Random pixel
noise filtered with a
Gaussian.
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Metric Comparison LDR-LDR

Our Metric — PDM [Winkler 2005]

25% 50% 75% 95%
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Metric Comparison HDR-HDR

Our Metric PDM
[Winkler 2005]
HDRVDP DRIM
[Mantiuk [Aydin et al. 2008]
et al 2005]
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Metric Comparison HDR-LDR

Our Metric PDM
[Winkler 2005]
HDRVDP DRIM
[Mantiuk [Aydin et al. 2008]
et al 2005]
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Evaluation of Rendering Methods

= http://drim.mpi-inf.mpg.de/

y .\
| i
l 1
|

|
|
|

f | |
,;zizoﬁ"'sﬂiéi%"- ‘ 33 ~:z-‘~.-z;;:::-‘
JEEBNSEEEE = Y
s %ﬁ} i
__1"*,.4 z X )’
PO

%
£ % ":.' e
&> \ Y | >
~o% h.}:. Ay S, # p <

With temporal filtering No temporal filtering Predicted distortion map
[Herzog et al. 2010]

[
25% 50% 75% 95%
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Evaluation of Rendering Qualities

High quality Low quality Predicted distortion map

]
25% 50% 75% 95%
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Evaluation of HDR Compression

Medium Compression — High Compression
25% 50% 75% 95%
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Evaluation of Video Tone Mapping

[Fattal et al. 2002] Detail Amplification Detail Loss
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Wrong Usage of IQM/VOQM

= Codruta O. Ancuti, Cosmin
Ancuti and Philippe Bekaert,
"Enhancing by Saliency-guided
Decolorization", In Proc. IEEE
Computer Vision and Pattern
Recognition (IEEE CVPR),
Colorado Springs, USA, 2011.

= DRIM absurdly used for
comparing color-to-grayscale
conversions
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3) EXPERIMENTAL
EVALUATIONS

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz #99



Subjective Experiments

= Vision scientists, neurologists, physiologists,
psychologists
push the knowledge about the HVS ahead
CG takes advantage of their results

= However, far from having computational model of HVS

= EXxperimental subjective analyses necessary
Validation and evaluation of methods
Deeper knowledge of examined field
Novel approaches
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3.1 Overview — Evaluations of:
Bottom-up vs. Top-down IQM
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3.1 Bottom-up vs. Top-down IQM

= automatic assessment of image quality
= Image compression, global illumination, etc.

Reference
Image

HVS MODEL

(IQM)

Distorted
Image

Training School - Brno, Czech Republic, COST, 5 October 2014

Visualization of differences
predicted by model
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Traditional vs. Structural —
Subjective Testing

= Traditional error sensitivity based approach
Bottom-up
VDP [Daly 93]
HDR-VDP [Mantiuk et al. 11]

= Structural similarity based approach

Top-down
SSIM [Wang et al. 04]
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Error Sensitivity Based

Approach
= Visible Differences Predictor (VDP) [Daly 93]

Reference | Amplit. | | ~gp ||Cortex ] Masking
Image Nonlin. Transform| | Function
¥ 3 "
Mutual o S S8
Masking g g‘é R
2eMEEl]ES
55| |2E| |38
o LL o > O
Distorted | Amplit. | | csE  |Cortex || Masking
Image Nonlin. Transform| | Function
= Threshold sensitivity
= Early vision modeling
= Visual Masking
Martin Cadik, http://cadik.posvete.cz #104
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Structural Similarity Based

Approach
= Structural SIMilarity Index [Wang et al. 04]
Goal of HVS o extract structural information

Lumi K= ﬁz’ﬁ i ( 1 v 1/2
: uminance a_= N (&, —,Ux)z)
Signal x Measurement ) \N -1 \
/D |Contrast Luminance
+/ Measurement Comparison
Contrast Combination L Similarity
_ Luminance Comparison Measure
Signal y »
Measurement

Structure
Comparison

/D |Contrast
+\L/ Measurement

1 N
o, = ﬂZi:I (x; — )y, _ﬂy)

= Simple implementation
= Fast computation
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Traditional vs. Structural —
Subjective Testing

= Independent subjective tests
32 subjects
30 uniformly compressed images (JPEG2000)
30 ROI compressed images
difference expressed by ratings

= Mean Opinion Scores

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz
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Traditional vs. Structural —

Objective Testing

Original
input
image

SSIM
probability
map

Training School - Brno, Czech Republic, COST, 5 October 2014

Martin Cadik, http://cadik.posvete.cz

ROI
compressed
input image

VDP
probability
map
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Traditional vs. Structural —

Test Results

10

9 -
8 -
0
7
o)
25
2
551
o)
Ve
0 A
7k
21 + SSIM
14 — Polynomial fit
0 T T T T T T
06 065 07 075 08 08 09 095
SSIM

Subjective MOS

N w
1 1

—_
1

~
1

(o]
1

o
1

~
1

» VDP
— Polynomial fit

30

40 50 60 70 80 90
VDP

Quality predictions compared to subjective MOS for the
SSIM (left) and for the VDP (right)

Training School - Brno, Czech Republic, COST, 5 October 2014
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Traditional vs. Structural —

Test Results (cont.)

1} 1
'c_*%cso.s {} c_gcs o.8}
506 5 0.6}
= S ¢
o o
0.2 P 0.2}
o} ol
\/IDP SISIM \/IDP SSIM
r r (ROI)
VDP 0.22 0.44
SSIM 0.72 0.51

Training School - Brno, Czech Republic, COST, 5 October 2014

r — Pearson
(parametric)
correlation
coefficient
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Traditional vs. Structural — Conclusions

= Simple approach not necessarily worse
= Poor performance in ROI-compression task
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3.2 Overview — Evaluations of:

STAR FR IQMs
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3.2 Evaluation of STAR FR-IQM

6 IQMs: AD (PSNR, MSE), sCIE-Lab, sCORREL, SSIM,
MS-SSIM, HDRVDP-2

= How good are IQMs in localizing artifacts?

= Evaluation of distortion maps (not just mean-opinion-
scores, i.e. one number per image)

= Computer graphics-generated contents and artifacts

= Two subjective tasks: given reference image and with no
reference image

[Cadik et al. SIGGRAPH Asia, 2012]
http://www.mpii.de/resources/hdr/igm-evaluation/
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Our Dataset: Example Rendering Artifacts

= e.g., low-freq. noise
from glossy instant
radiosity or photon
density estimation
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Rendering Artifacts

= Clamping Bias
(darkening in corners)

Training School - Brno, Czech Republic, COST, 5 October 2014 #114



Rendering Artifacts

= Shadow Mapping

easy to generate large
sample set
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Rendering Artifacts

= Progressive photon mapping: when to stop iterating?

1 iteration 2 iteration 8 iteration

60 iteration 150 iteration 1500 iteration
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User Experiment - Mean Distortion Maps

= 37 test images \ |

= 35 subjects (expert and
non experts)

= Localization of artifacts
= Scribbling interface
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User Experiment — With Reference

= Noticeable distortions
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User Experiment — No Reference
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Example User Responses
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With-reference vs. No-reference

= Results rather similar

wiithEhiefeliehce wiith=neference wiith-reference

neslefelience ne:leference no:neference
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With-reference vs. No-reference (cont.)

= Strong correlation
(perhaps people do not need the reference)

. SRCC=0.88 SRCC=0.85

® ®

(CJ 0.75 o e LI 8 0.75

o z z o

D : : 2

o i : s

| : s |

\8, 0.5 "‘ ........................ \8/ 05

> / >

2 2 ¥ -

Q st 5 e : :

o (.25 Wop? o o 0.25+ ; :

5 s 3
025 05 0.75 1 025 0.5 0.75 1

probability (with—reference) probability (with—reference)

EG’'12 dataset new dataset
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Results — Example of Metric Predictions

efielience

—

C with reference experimen AD - distortion map
VMISESSIIV

-

HDR-VDP-2 - distortion map

Training School - Brno, Czech Republic, COST, 5 October 2014
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sCIE-Lab - distortion map
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Results — Example of Metric Predictions

observers
?—

HDR-VDP-2 - distortio

'H‘.R;VDPZ -
Vm‘.‘

Training School - Brno, Czech Republic, COST, 5 October 2014

sCIE-Lab - distorti
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Results — Example of Metric Predictions

reference

OOSERVAERS

VISESSIM

RHIBDRZVD P2

e

Training School - Brno, Czech Republic, COST, 5 October 2014

SCEIE-1"alb

|E-Lab - distortion map
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Measures of Metric Performance

= Previous experiments A A e
MOS/DMOS {1,2,3,4,5}
= No easy way to capture MOS

locally
Probability of detection [0,1]

DMOS

Probability
of detection |

0 P_hysical amount of distortion —

= Receiver operating characteristic 100% ———
(ROC) e
Area under curve (AUC) P(e) A
Thresholds (25%, 50%, 75%)
0% P(FP) 100%
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Metric Performance Comparison — ROC

1
0.9
0.8

0.7
0.6
0.5

0.4

True positive rate

0

0.3
0.2 |
0.1 |

0O 0.1 0203040506 0.7 0809 1
False positive rate

| SA12. o S
L . . . / ...............................
. / N
L . . ]/ B L 4 L
BN S N A
!l : | : : : | : |
L o ]
/ | i | : rand

B N A AD
_!’ _________________ SSIM

| MS-SSIM
_J ................. HDR_VDP_21
Wl sClE-Lab

_ - — — gCor(el |

0O 0.1 02030405060.70809 1
False positive rate

= With-reference experiment results (see paper for no-ref.)

Training School - Brno, Czech Republic, COST, 5 October 2014
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Metric Performance Comparison (cont.)

= Bootstrapping
(randomization with
repetitions 500x)
Bonferroni correction

= No statistically significant
difference between IQMs

= Performance differs
significantly per scene

Training School - Brno, Czech Republic, COST, 5 October 2014

g8 AD .. MS-SSIM_HDR-VDP-2
‘a % ,/,,”’// OZ 70 fv‘ 720/0 L.
>3 9% Q 55%’ 5\2% %
— | " Qo
o £ sCétrel 98% SCIE-L4b $SIM
LLI g | | |
0.75 0.8 0.85 0.9
28 MS-SSIM sCIE-Lab HDR-VDP-2
e 1%
SO % BE% 57%
~ D
5 d (—68% ad)
8 8 | g | S M |
0.75 0.8 0.85 0.9
[}
g2 HDR-VDP-2 sCJE-Lab Ao sCoyrel
g2 80% T~
3% 71% % 58% 69% 9%
% E [aXels] 00 //
= § MS-SSIM °°° SSIM'°" A
| | | | |
0.65 0.7 0.75 0.8 0.85 0.9
= Q@
09 sCIE-Lab HDR-VDP-2 sCoyrel
T © ~
@ ©
= MIS-SSIM ‘ . | .
0.65 0.7 0.75 0.8 0.85 0.9
AUC - area under curve
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Analysis of Metric Failures = R
Brightness and contrast change - - ool

0506070809 1

iefelience olysenverss | HBR-=V.DP2

VSSSSIE | SCORNEL
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Analysis of Metric Failures ¥

sCIE-Lab

Visibility of low-contrast differences o g Bt

reference N O IS(EAVEIRS

VISESSIN -, SCORRE[E
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~— /]

rand
/" ——AD
7 ssIM
o MS-SSIM
 — HDR-VDP-2

- . /S «CIE-Lab
Spatial accuracy of the prediction map-/ /

Analysis of Metric Fallures

reference
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rand

—AD

———SSIM

— MS-SSIM

——— HDR-VDP-2
sCIE-Lab

— — — sCorrel

Analysis of Metric Fallures

0 0102030405060.70809 1

reference test
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09p v rand
QB

Analysis of Metric Failures = | %

Plausibility of shading (cont.) o o

0 0102030405060.70.809 1

reference EOSEIVEES

!‘:\X \‘wuijf //

reference test
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Conclusions

= Rendering datasets for IQM evaluation with
subjective localized distortion maps

= With reference = no-reference experiments

= State-of-the-art IQMs far from subjective ground-
truths

= No universally reliable metric exists
= Large space for improvements
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3.3 Overview — Evaluations of:

HDR Tone Mapping methods
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3.3 Evaluation of HDR Tone Mapping

= HDR images = LDR (ordinary) images
several orders of typically 8b per channel
magnitude [0, 255]
high precision low precision

displayable on
conventional media

5433270012345 5433221 01 =234ac

HERy UERxay
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Evaluation of TMO

= 14 tone mapping operators
= 3 real-world scenes (natural

outdoor ] L

indoor

= 6 basic attributtes
overall I.qg., contrast, brightness, colors, details, artifacts

= 20 observers [Cadik et al. 06], [Cadik et al. 08]
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Perceptual Experiments

1) With reference study

original HDR scene and tone
mapped image presented
simultaneously

direct rating to the real world

Training School - Brno, Czech Republic, COST, 5 October 2014
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Perceptual Experiments
2) Without reference study

another observers (not aware of the original scene)
ranking

high-quality color
printouts

mental model
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Results

B |n total: more than 5000 scores collected

B Parametric tests

ANOVA, MANOVA
Pearson correlations, etc.

B Nonparametric tests
Kruskal-Wallis, Friedman’s test, n-way nonparametric ANOVA
PERMANOVA (nonparametric MANOVA)
Spearman correlations, etc.
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Results — Evaluation of TMO

= Groups of methods

Linear Clip . —e—
wraes| OVerall image e
Tumblin99 i —&—
Reinhard02 quallty ——
Schlick94 —a—
Ward9? —a—
Durand0z2 —a—
LCIS99 —O—
PattanaikD2 —a—
Choudhuryd3 —6—
Dragcl3 —a—
Ashikhmin02 ——
Fattal02 —O—
Chiu93d| —o—
0 2 4 'l:'i ;3 10 12
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Global and Local Methods

[Ward94] [LCIS99]
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Results — Evaluation of TMO

2.5r

Overall scores (both experiments)
2 -

overall brightness contrast colors details artifacts
1.5 image quality

-2.5

B Lncarcip [ wandss B tumbings [ Reinhado2 [ Schiickss ] wanag? [ 1 ourandoz
[ ] Lcisgs [ ] Pattanaikg2 [ | ChoudhuryD3 [ ] OragoD3 I Ashikhmingz [l Fataioz Bl chiuss
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Results — Image Attributes

Colour
Reproduction
~— ; '
-I;.' r
(4} Brightness
= Reproduction | Increase _____________ |
O k- Increase : Glare :
D 3 r . Reproduction !
() Contrast [
S Reproduction
: : _Decrease
c_ﬁ Letail .
W Reproduction Decrease _ _ __ _ __ _ _____ |
G}J 2 Increase I Visual :
O ' | Acuity |
Artifacts ittt
P
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Results — Image Attributes

= correlations between attributes verified
= highest importance of contrast

= regression results

various methods used

OlIQ == 0.37 Contrast +
0.36 Colors +
0.21 Artifacts +

0.07 Brigtness +

0.06 Details

= ranking vs. rating
possible evaluation without reference
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3.4 Overview — Evaluations of:

Color to Grayscale Conversions
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3.4 Evaluation of Color to Grayscale
Conversions

= 3D data =2 1D data
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Color to Grayscale — Limit Case

= Color image with constant luminance
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Color to Grayscale — Limit Case

= Color image with constant luminance

Widely used CIE-Y luminance conversion
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Color to Grayscale — Limit Case

= Color image with constant luminance

[Neumann, Cadik 07]
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= Accuracy

: Preference\

= 2AFC design

http://ranker.sourceforge.net

= 119 Participants

= 7 state-of-the art methods
default parameters to convert 24 input color images

[Cadik 08]
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Evaluated Conversions
JCIEY

— Y channel of CIE XYZ model [1931]

] Bala0O4

— [Bala & Eschbach 04]

] Decolorize
— [Grundland & Dodgson 05]

“ Color2Gray

— [Gooch et al. 05]

+» Rasche05

— [Rasche et al. 05]
“* NeumannO7/

— [Neumann et al. 07]

J Smith08

—  [Smith et al. 08]
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The luminance generated by a physical device is generally fiota linear
function of the applied signal” A conventional CRT has a

luminance produced at the face of the display is
approximately proportional to the applied voltage raised to the 2.5
power. The numerical value of the exponent of this power function is
colloquially known as ganinia; This nonlinearity must be compensated in
order to achieve correct reproduction of luminance.

As mentioned above (What is lightness?), human vision has a nonuniform
perceptual response to luminance. If luminance is to be coded into a small
number of steps, say 256, then in order for the most effective perceptual

+b*

+a




Results

= Over 20 000 human responses collected =

Thurstone’s Law of Comp. Judgments (case V)
> 4

Z-scores (standard scores) =» statistics

= Multifactorial (n-way) ANOVA

Factors: input images (24), experiments (2), conversions (7)
Statistically significant main effect: conversion =
meaningful to proceed with the evaluation

Statistically significant interaction effects: conversion x
experiment, conversion x input image =» meaningful to show
results separately for each input image and each experiment
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Results — Overall

= Multiple comparison test [Tukey]

Overall ranking of conversions
Statistical significance of differences

Decolorize  SmithO8 CIEY  Color2Gray Rasche05 Neumann(O7  Bala04
0.544 0.487 0.158  0.149 -0.203 -0.317 -0.819
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Preference and Accuracy
= Strong correlation

betweeﬂ COnverSIOH b Il accuracy
accuracy and the Mlproferonce
. 0.5
grayscale image I[
preference Dj; B
(r=0.97) : “ !!
= PCA
15t component: 96% of
data Variance - GollarEGraF(é De::calorizel Ne&mannﬂ?l SmlithDE
CIEY Bala04 Rasche05

One dimension prevails

= CIEY and Smith08 —
consistent performance
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Individual Images

= Z-scores
independently for "I Rezo 86 .
each image o} 1093 Y

= coef. of agreement 1 Y

= coef. of consistency

ﬂ/n\»ﬂ
o [ ]
Rasche(5

= details tabulated in (o og0®
Smith08
the paper .

-3
accuracy (with reference)

8 CE% ¢ e Color2Gray
CIEY
Decolorize
Bala04
Neumann07

|
—
O
L
P
»
[#]

preference (without reference)
o
o
o
e 9
¢
L
> %:
.

e O O 0O e @

I
n

http://www.cgg.cvut.cz/~cadikm/color to gray evaluation
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Individual Images

= No conversion produces universally good results

= Each of inquired conversions ranked the worst
for at least one input image

= Apart from Bala04, each conversion ranked the
best for some input image

= Decolorize good for images with narrow gamuts
= Smith08 good for colorful images

=» To improve robustness of current conversions
over various inputs
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Conclusions (1) — Methods to Use

= Images = Videos
HDR-HDR HDR-HDR
= HDRVDP2 [Mantiuk et al. 11] = DRIVQM [Aydin et al. 10]
HDR-LDR HDR-LDR
= HDRVDP2 [Mantiuk et al. 11] = DRIVQM [Aydin et al. 10]
= TMQI [Yeganeh, Wang 13] LDR-LDR
LDR-LDR = PDM [Winkler 05]

= LPLD [Cadik et al. 13]
= SSIM [Wang, Bovik 04]

Try it out yourselves
http://metrics.mpi-inf. mpg.de/
http://resources.mpi-inf. mpg.de/hdr/metric/

Training School - Brno, Czech Republic, COST, 5 October 2014 Martin Cadik, http://cadik.posvete.cz

#165


http://metrics.mpi-inf.mpg.de/
http://resources.mpi-inf.mpg.de/hdr/metric/

Conclusions (2)

= With reference ~~ no-reference experiments
= Simple, robust techniques score high

= Advanced fancy methods are nice, but need to
Improve on robustness

= Usually no universally amenable method
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Interesting Directions in QA

= Spectral image difference prediction
[Le Moan and Urban 14]

Interestingness of images

Interestingness = aesthetics, unusualness, general preferences
[Gygli et al. 13]

Pictorial quality of 3D models
[Vasa et al ]
= Specific metrics
Visual popping [Schwarz, Stamminger 09]

Similarity measure for illustrations [Garces et al. 14]
Quality of image completion [Kopf et al. 14]
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SoMoP
Thanks for your attention

= cadik@fit.vutbr.cz, http://cadik.posvete.cz/
= Many thanks to MPIl Saarbrucken HDRI crowd
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