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Abstract

Nowadays, it is evident that we must consider human
perceptual properties to visualize information clearly and
efficiently. We may utilize computational models of human
visual systems to consider human perception well. Image
quality assessment is a challenging task that is tradition-
ally approached by such computational models. Recently, a
new assessment methodology based on structural similarity
has been proposed. In this paper we select two representa-
tive models of each group, the Visible Differences Predictor
and the Structural SIMilarity index, for evaluation. We be-
gin with the description of these two approaches and mod-
els. We then depict the subjective tests that we have con-
ducted to obtain mean opinion scores. Inputs to these tests
included uniformly compressed images and images com-
pressed non-uniformly with regions of interest. Then, we
discuss the performance of the two models, and the similar-
ities and differences between the two models. We end with a
summary of the important advantages of each approach.

1. Introduction

Image quality assessment and comparison metrics play
an important role in various graphics oriented applications.
They can be used to monitor image quality for quality con-
trol systems, they can be employed to benchmark image
processing algorithms, and they can be embedded into the
rendering algorithms to optimize their performances and
parameter settings. It is well known [8], that classical com-
parison metrics like Root Mean Square error are not suffi-
cient when applied to the comparison of images, because
they poorly predict the differences between the images as
perceived by the human observer. This fact has led to the
development of more advanced perceptual quality assess-
ment techniques.

Traditional perceptual image quality assessment ap-
proaches are based on measuring the errors (signal differ-
ences) between the distorted and the reference images, and
attempt to quantify the errors in a way that simulates hu-
man visual error sensitivity features.

Different from the traditional error-sensitivity-based ap-
proach, structural similarity based image quality as-
sessment has been recently outlined. This approach
is based on the following philosophy: the main func-
tion of the human visual system is to extract structural
information from the viewing field, and the human vi-
sual system is highly adapted for this purpose. Therefore,
a measurement of structural information loss can pro-
vide a good approximation to the perceived image distor-
tion [10].

In this paper we evaluate the two mentioned principal
approaches to image quality assessment. We judge the re-
sponses of representative models of each group using the
subjective opinion scores. We have conducted subjective
tests to obtain our own values of the scores. The test input
images included uniformly compressed images and images
compressed non-uniformly with regions of interests. Region
of interest (ROI) image compression allows less degrada-
tion for the ROIs than for the other parts of the image.

The paper is organized as follows. In Section 2, we sum-
marize the two representative models – the visible differ-
ences predictor and the structural similarity index. In Sec-
tion 3, we describe subjective and objective testing that was
performed. Finally, in Section 4, we examine and discuss
the results of the tests and we conclude with a summary of
the important advantages of each approach.

2. Background

Recently, several studies on performance of traditional
perceptual image quality models have been published [5, 4,
2, 11]. However, as far as we know, no independent evalua-
tion of traditional and structural similarity approaches have
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been carried out, apart from the article where the SSIM
model was introduced [10].

For comparison of the traditional error-sensitivity
and structural similarity based approaches we have cho-
sen a representative from each group. The Visible Dif-
ferences Predictor (VDP) is a typical example of an im-
age quality metric based on error sensitivity, whereas
the Structural SIMilarity index (SSIM) is a specific ex-
ample of a structural similarity quality measure. We
have included the responses of the Universal Quality In-
dex (UQI) into the evaluation as well. The UQI is a special
case of the SSIM.

The input to the models consists of two images and (in
the VDP case) parameters for viewing conditions, whereas
the output is a map describing the visible differences be-
tween them. The output map defines the probability of de-
tecting the differences between the two images as a function
of their location in the images.

2.1. Visible Differences Predictor

The VDP model [1] interprets early vision behaviour,
from retinal contrast sensitivity to spatial masking. The
use of the VDP consists of three main stages: components
for calibration of the input images, a human visual system
(HVS) model and a method for displaying the HVS visible
differences.
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Figure 1. Block diagram of the Visible Differ-
ences Predictor (heavy lines indicate parallel
processing).

The key element of the VDP is the human visual sys-
tem model, see Figure 1. It concentrates on the lower-
order processing of the visual system, such as the optics,
retina, lateral geniculate nucleus, and striate cortex. The
HVS model consists of a number of processes that limit
visual sensitivity. Three main sensitivity variations are ac-
counted for, namely, as a function of light level, spatial fre-
quency, and signal content. Sensitivity S is defined as the
inverse of the contrast CT required to produce a thresh-
old response, S = 1/CT , where contrast is defined as

C = (Lmax − Lmean)/Lmean, where Lmax and Lmean

refer to the maximum and mean luminances.
The variations in sensitivity as a function of light level

are simulated by amplitude nonlinearity. Each input lumi-
nance Lij is transformed by a simplified version of the reti-
nal response to an ”amplitude non-linearity value” bij de-
fined as: bij = Lij/(Lij + 12.6L0.63

ij ), where the constants
12.6 and 0.63 apply when luminance is expressed in cd/m2.
For this model the adaptation level for an image pixel is
solely determined from that pixel.

The variations as a function of spatial frequency are
modeled by the contrast sensitivity function (CSF), imple-
mented as a filtering process. A Fast Fourier transform is ap-
plied to the values bij . The resulting magnitudes, fuv(b) are
filtered by a CSF which is a function of the image size in de-
grees and light adaptation level Lm.

The variations in sensitivity due to a signal content are
referred to as masking. Masking effects are modeled by
the detection mechanism, which is the most complicated
element of the VDP. It consists of four subcomponents:
image channeling, spatial masking, psychometric function,
and probability summation.

During the image channeling stage, the input image is
fanned out from one channel to 31 channels or bands as
follows. Each channel is associated with one cortex filter
which consists of a radial filter (dom, difference of mesa
filter) and an orientational filter (fan filter). The total num-
ber of radial filters is six resulting in five frequency bands
and one base band. Each of these bands except for the base
band is further fanned out into six channels of different ori-
entation. Thus five frequency bands times six orientations
per bands plus one base band results in 31 channels.

2.2. The Structural SIMilarity Index

The Structural SIMilarity Index (SSIM) [10] is a spe-
cific example of a structural similarity quality measure. The
structural information in an image is defined as those at-
tributes that represent the structure of objects in the scene,
independent of the average luminance and contrast. The di-
agram of the quality assessment using the SSIM is shown
in Figure 2. (Note: the SSIM is a generalization of the Uni-
versal Quality Index [9]).

The SSIM separates the task of similarity measurement
into three comparisons. First, the luminance of each signal
x and y is compared. The luminance comparison function
l(x, y) is a function of µx and µy: l(x, y) =

2µxµy+C1

µ2
x
+µ2

y
+C1

,

where the µx = 1

N

∑N
i=1

xi (the mean intensity) is the esti-
mate of luminance.

Second, the mean intensity is removed from the
signal and the contrast comparison function is eval-
uated as follows: c(x, y) =

2σxσy+C2

σ2
x
+σ2

y
+C2

, where the



Luminance
Measurement

Contrast
Measurement

Luminance
Comparison

Combination

Structure
Comparison

Contrast
Comparison

Signal x

+

-

Luminance
Measurement

Contrast
Measurement

Signal y

+

-
Similarity
Measure

Figure 2. Diagram of the structural similarity
(SSIM) measurement system.

σx =
(

1

N−1

∑N
i=1

(xi − µx)2
)1/2

(the square root of vari-
ance) is the estimate of the signal contrast.

Third, the signal is normalized by its own standard de-
viation, so that the two signals being compared have unit
standard deviation. The structure comparison is defined as
follows: s(x, y) =

σxy+C3

σxσy+C3

, using the correlation (in-
ner product) σxy between the normalized signals, σxy =

1

N−1

∑N
i=1

(xi − µx)(yi − µy). C1, C2, and C3 are con-
stants included to avoid instabilities.

Finally, the three components are combined to yield an
overall similarity measure (structure similarity index):

SSIM(x, y) = [l(x, y)]α · [c(x, y)]β · [s(x, y)]γ ,

where α > 0, β > 0, and γ > 0 are parameters
used to adjust the relative importance of the three com-
ponents. This definition satisfies the conditions of
symmetry: SSIM(x, y) = SSIM(y, x), bound-
edness: SSIM(x, y) ≤ 1, and unique maximum:
SSIM(x, y) = 1 iff x = y. The Universal Qual-
ity Index (UQI) corresponds to the special case that
C1 = C2 = 0, which produces unstable results when ei-
ther (µ2

x + µ2
y) or (σ2

x + σ2
y) is very close to zero.

For image quality assessment, it is useful to apply the
SSIM index locally. Localized quality measurement can
provide a spatially varying quality map of the image, which
delivers more information about the quality degradation
of the image. The local statistics µx, σx, and σxy are
computed within a local window, which moves pixel-by-
pixel over the entire image. When a single overall quality
measure of the entire image is required, we use a mean
SSIM (MSSIM) index to evaluate the overall image qual-
ity: MSSIM(X, Y ) = 1

M

∑M
j=1

SSIM(xj , yj), where
X and Y are the input images, xj and yj are the image con-
tents at the j−th local window, and M is the number of
samples in the quality map.

3. Measurements

First, we have conducted subjective testing to obtain sub-
jective opinion scores. Then, we have executed the objective
testing using the VDP and the SSIM using the same group
of inputs. The results of these two tests were then compared
to evaluate the performance of the inquired models.

3.1. Subjective Testing

As visual stimuli we have used the 33 JPEG 2000-
compressed photos of an urban construction site. We have
conducted two tests: in the first test all the input images
were compressed uniformly. In the second test the im-
ages contained manually-specified regions of interest (ROI)
compressed with better quality than the other areas of the
image. The total number of 32 subjects were asked to ex-
press the difference between the original and compressed
images by ratings. Subjects had normal or corrected-to nor-
mal vision and were non-experts in the field of image com-
parison. Mean opinion scores (MOSs) were computed for
each image pair from raw scores of each subject.

3.2. Objective Testing

The pairs of images used in the subjective tests were used
as input stimuli for both the VDP and the SSIM models.
The parameters of the VDP model were set properly to cor-
respond with the subjective observers configurations.

Both the inspected models are relative because they do
not describe an absolute value of image quality but instead
they address the problem of differences between two im-
ages. The output is a map describing the visible differences
between them, see Figure 4 as an example. The output map
defines the probability of detecting the differences between
the two images as a function of their location in the images.
An advantage is that we can see the nature of the differ-
ence and we can use this information for further improve-
ment of the design.

However, since we need a single overall quality mea-
sure as well, we use a mean SSIM index in the case of the
SSIM model. For the VDP model we use the approach as
follows [6]: the difference between images D0.75 is the per-
centage of pixels for which the probability of difference de-
tection is greater than 0.75. It is assumed, that the differ-
ence can be perceived for a given pixel when the probabil-
ity value is greater than 0.75 (75%), which is the standard
threshold value for discrimination tasks.

3.3. Test Results

As a visual illustration of the relationship between sub-
jective data and model predictions, scatter plots of MOS



versus the VDP and the SSIM predictions are shown in Fig-
ure 3. Each point in a graph represents one test image, with
its vertical and horizontal coordinates representing its sub-
jective MOS and the model prediction, respectively. As we
can see, the SSIM results exhibit better consistency with the
subjective data than the results of the VDP.

For the numerical evaluation we use both the stan-
dard (Pearson) and the non-parametric (Spearman) corre-
lations [3]. We use the 3rd order polynomial fit function
prior to computation of the correlation coefficients, because
the mapping of the objective model outputs to the sub-
jective MOS is generally non-linear. These non-linear re-
gression functions are used to transform the set of model
outputs to a set of predicted MOS values. Correlation co-
efficients are then computed between these values and the
subjective MOS.

4. Discussion

In this section we discuss the performances of the mod-
els. First, we discuss the performances for uniformly com-
pressed input images, then we consider the results for ROI-
compressed images. Finally, we point out the advantages of
each model.

4.1. Quality Assessment Performances

Calculated values of the Pearson (CC) and Spearman
(SROCC) correlation coefficients are presented in Table 1.
The values in the first column (overall performances) show
that the correlation to the MOS is much better for the SSIM
model than for the the VDP. The absolute values of the CCs
are generally lower than the published results [10]. This
slight discrepancy is probably caused by the selection of
input stimuli. A more comprehensive set of input images
would be valuable to draw more general conclusions.

As one may see in the second and third column of Ta-
ble 1, the performances of models in the ROI task were
comparable and quite poor. This has led us to experiments
with the ROI functions, as described in the following sec-
tion.

Model CC CC-ROI SROCC-ROI
VDP 0.22 0.44 0.39
SSIM 0.72 0.51 0.45
UQI 0.55 0.20 0.40

Table 1. Quality assessment performances of
the VDP, the SSIM and the UQI models.

4.2. ROI Quality Assessment

Half of the input stimuli in the subjective tests were im-
ages compressed with manually-defined ROIs. Since we
had the explicit information about the ROI structure for each
of the input images we were able to incorporate it into the
computation of the VDP and the SSIM responses. Based
on the information about the ROI structure (spatial arrange-
ment and compression ratios) we have constructed the ”ROI
functions” that we have used to scale the output probability
maps. We have experimented with various ROI functions in-
cluding the absolute values of compressions, smoothed and
reduced range function, approximation by Gaussians, and
the inversion of the absolute values. See Figure 5.

For all of the tested ROI functions the values of correla-
tion coefficients between the scaled results and MOSs were
less than in the non-ROI-aware case, both for the VDP and
for the SSIM. We suppose that the ROI information must be
involved directly during the computation of an actual model
taking into consideration such issues as the foveation, etc.
This offers a wide area for future research and thorough psy-
chophysical testing.

On the other side, the SSIM model detects the regions
of interest in the image quite well, as we can see for ex-
ample on the bottom right image in Figure 4. This feature
of the SSIM would be used to assess the locations of re-
gions of interest automatically. However, we suppose that
visual attention-aware models [7] would even outperform
the SSIM in this task.

4.3. Advantages of Evaluated Models

The VDP model is based on generally-held human visual
system assumptions and is able to handle various phenom-
ena such as the visual masking. The consistency of the VDP
model has been previously verified [6] and the model was
successfully applied to various issues not just in the area of
image quality assessment, but also for the computer graph-
ics algorithms [6].

The correlation coefficients between our subjective data
set and the SSIM model responses exhibit that the SSIM
model shows better consistency with subjective data than
the VDP does. As we have seen, the SSIM model is able
to detect regions of interest in the image. This feature is
promising for future research on ROI issues. The SSIM
model is simple to implement in comparison to the VDP
model, and the MatLab code is publicly available. The
computation of the SSIM does not require time consum-
ing Fourier transformations (as the VDP does) and it is cer-
tainly faster than the computation of the VDP model.
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Figure 3. Quality predictions compared to subjective mean opinion scores (MOS) for the Visible Dif-
ferences Predictor (left) and for the Structural SIMilarity index (right).

5. Conclusion

Image quality assessment models are relevant for vari-
ous computer graphics applications. In this paper, we have
presented the independent comparison of two image quality
assessment approaches. We have evaluated the VDP model
and the SSIM model as the representatives of the traditional
perceptual approach and the structural similarity based ap-
proach, respectively. We have described the subjective tests
that we have conducted to obtain mean opinion scores both
for uniformly and ROI compressed images.

The evaluation of subjective results and predictions of
the models shows that the structural based approach outper-
forms the traditional approach for involved input stimuli.
As the implementation of the SSIM model is more straight-
forward than the implementation of the VDP, we propose
that the SSIM model is a significant alternative to the thor-
oughly verified VDP model. The SSIM model is able to de-
tect the ROIs in the image. However, both models perform
poorly in the ROI image assessment task. Moreover, the in-
put stimuli set and the group of observers should be more
comprehensive to obtain more general results.
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Figure 4. Image quality assessment using the VDP and the SSIM. Original image (top left), ROI com-
pressed image (top right), VDP detection probability map (bottom left), SSIM detection probability
map (bottom right).

Figure 5. ROI functions. Absolte values (left), smoothed and reduced range (middle), approximated
by Gaussians (right).




