Perceptual Image Quality Assessment Metrics

Martin Čadík

Czech Technical University in Prague, Czech Republic

Content

- Why to concern human perception in computer graphics?
- Important characteristics of the HVS
- Error sensitivity approach, VDP
- Structure similarity approach, SSIM
- Our Experiments

Jack Tumblin, James A. Ferwerda:

"The goal of computer graphics is not to control light, but to control our perception of light. Light is merely a carrier of the information we gather by perception."

- Effective visualization of information
- Quality improvement
- Saving of resources

Human Visual System

 Physical structure well established

Visual masking

March 29, 2004 (4)

Human Visual System (cont.)

CSF

- specifies the detection threshold as a function of the spatial frequency

March 29, 2004 (5)

Computer Graphics Group

Perceptual Image Quality Assessment

RMSE is NOT sufficient

Computer Graphics Group

Error Sensitivity Based Approach

General framework

- Visible Differences Predictor [Daly93]
- Perceptual Distortion Measure [Teo, Heeger 94]
- Visual Discrimination Model [Lubin 95]
- Gabor pyramid model [Taylor et al. 97]
- WVDP [Bradley 99]

Visible Differences Predictor

[Daly 93]

- Threshold sensitivity
- Visual Masking

March 29, 2004

Structural Similarity Based Approach

- Main function of the HVS: to extract structural information
- UQI [Wang 02]
- SSIM [Wang 04]
- Multidimensional Quality Measure Using SVD [Shnayderman 04]

Structural SIMilarity Index

[Wang 04]

- Simple implementation
- Fast computation

March 29, 2004

Traditional vs. Structural Approach

- Representatives from each group
 - VDP
 - SSIM
- Independent subjective tests
 - 33 subjects
 - uniformly compressed images
 - ROI compressed images
- Results
 - SSIM usually better
 - SSIM faster to compute and easier to implement
 - bad performance of both models in ROI tasks

Traditional vs. Structural Approach (cont.)

Original (left) and ROI compressed (right) input images

SSIM probability map (left) and

VDP probability map (right)

March 29, 2004 (12)

Comparing Non-Photorealistic Images

- NPR images sometimes better to visualize information i.e. architectural sketches [Schumann et al. 96]
- VDP model
- Input images
 - ray-traced
 - diffuse radiosity
 - real photos
- Various image-based operators tested
- Results
 - absolute values of differences inherently high
 - some groups of techniques identified from correlations
 - HOWEVER: VDP just a first stage
 - 'semantics' must be considered
 - FDP's => Functional differences predictors [Ferwerda 03]

Thank You for Your Attention

- QUESTIONS?
- cadikm@fel.cvut.cz

March 29, 2004

