
FFT and Convolution Performance in Image Filtering on GPU

Ondřej Fialka, MartinČadı́k
Department of Computer Science and Engineering, Czech Technical University in Prague

Karlovo náměstı́ 13, 121 35 Prague, Czech Republic
fialko1@fel.cvut.cz, cadikm@fel.cvut.cz

Abstract
Many contemporary visualization tools comprise some

image filtering approach. Since image filtering approaches
are very computationally demanding, the acceleration us-
ing graphics-hardware (GPU) is very desirable to preserve
interactivity of the main visualization tool itself. In this
article we take a close look on GPU implementation of
two basic approaches to image filtering – Fast Fourier
Transform (frequency domain) and convolution (spatial
domain). We evaluate these methods in terms of the per-
formance in real time applications and suitability for GPU
implementation. Convolution yields better performance
than Fast Fourier Transform (FFT) in many cases; how-
ever, this observation cannot be generalized. In this article
we identify conditions under which the FFT gives better
performance than the corresponding convolution and we
assess the different kernel sizes and issues of application
of multiple filters on one image.

Keywords— Fast Fourier Transformation (FFT), convolu-
tion, Graphics Processing Unit (GPU), image filtering

1 Introduction
Many image processing techniques that until most re-

cently required a considerable amount of CPU time are be-
coming available for real time applications thanks to mod-
ern graphics hardware (GPUs). These techniques range
from simple blurring, sharpening or fog effects to sophis-
ticated methods of tone mapping of high dynamic range
(HDR) images. Many of these techniques apply various
filters in the process of image transformation and advanced
effects can be achieved by combining several filters. There-
fore the application of filters is one of the key issues in
modern computer graphics. There exist two basic ap-
proaches to filtering – filtering in thespatial and filtering
in the frequency domain.

While in the spatial domain we apply filter by simple
convolutionof the image and the kernel of the filter func-
tion, in the frequency domain we must convert the image
into the frequency domain usingFourier transform, then
we must apply the filter by multiplication and finally we

have to transform the result back to spatial domain using
inverse transform. Both of these approaches have their
pros and cons and are profitable under different condi-
tions. CPU based implementations are well known and
have been described thoroughly. However, GPU imple-
mentations bring many new issues that have to be resolved.
This article takes a look at the implementation of filter-
ing techniques on GPUs and evaluates their performance
in real time applications. The focus is given on the usage
in processing (filtering) of images, see figure 1.

2 Previous Work
Fast Fourier Transform is a well known technique and

many slightly different FFT algorithms have been proposed
in history. The problem is that most of them cannot be
directly implemented on a GPU. Moreland and Angel [5]
were first to describe how to implement FFT on a GPU, but
their work is out of date now since they used older graphics
cards (NVidia GeForce 5000 series) than those available
nowadays (6000 and 7000 series) and therefore their pos-
sibilities were somewhat limited. A different and a very
effective approach for medical images was developed by
Sumamaweera and Liu [8]. Their solution adopts the dec-
imation in time algorithm and enables the computational
load to be split between the pixel and vertex shaders and
the rasterizer. However, the performance speedup intro-
duced by splitting the load is not very significant – about
10% according to their results.

Most of the proposed approaches consider just
greyscale images when it comes to FFT. Quaternion
Fourier Transform [1] is a hypercomplex (numbers with
four components) version of the standard (complex) FT
and can be used for processing of images with up to four
channels. Much work has been done on applying FFT and
convolution in signal processing [7]. Smith in his book [7]
compares both methods in term of performance for CPU
implementations. We make a similar comparison for GPU
implementations, which differ in many aspects from tradi-
tional CPU algorithms.

Image filters have been extensively used in many HDR
tone mapping techniques [3, 9]. Despite this fact, not much

In Proceedings of the Tenth International Conference 
on Information Visualisation. 

Los Alamitos: IEEE Computer Society, p. 609-614. 2006.



Figure 1: Image filtering: an ex-
ample of the application of the
low pass Gaussian filter using four-
channel FFT (256x256). Left:
original image, Right: result of the
filtering process.

work has been done in comparing the FFT and convolution
on GPU considering their pros and cons for HDR applica-
tions.

3 Theory and Implementation Issues

3.1 Discrete Fast Fourier Transform
One-dimensional Fourier transform of discrete function

x(n) with N samples is defined as follows:

X(k) =
N−1
∑

n=0

x(n)W kn

N
, 0 ≤ k ≤ N − 1,

where

W kn

N = e−i
2πkn

N . (1)

The FT is separable and we can thus compute 2D FT
by applying 1D FTs to all rows and then to all columns (or
vice versa). A naive approach yieldsO(N2). So-called fast
Fourier transform (FFT) algorithm reduces the complexity
to O(N log N).

The algorithm for FFT we chose to implement is known
as decimation in frequency 2-radix(DIF). It is easily
mapped onto the GPU computational model. It can be de-
scribed by a butterfly network shown in figures 2 and 3.
Input values are on the left side, arrows indicate the distri-
bution of values. Circles represents addition, -1’s indicate
sign reversal and W’s indicate complex multiplication as in
equation (1). The sequence of transformed values comes
out in bit-reversed order and therefore reordering is neces-
sary.

GPU implementation of FFT

As stated previously, the transform of a 2D image is done
by applying 1D FFT’s to all rows and columns consecu-
tively. All 1D transforms can be applied inlog

2
N steps

(image N by N). In each step, pixels form pairs between

two groups – G(i) and H(i) – as shown in figure 3. In-
stead of using branching and making different computa-
tions based on which group the current pixel belongs to, it
is more efficient to execute the same instructions in both
cases. The only difference between them is the sign and
coefficients of the complex multiplication which are all
fetched from a precomputed texture. The complex mul-
tiplication by the factor W from equation (1) can be de-
composed as:

(a + bi) e−i
2πk

N = a cos

(

2πk

N

)

− b sin

(

2πk

N

)

+

+i

[

a cos

(

2πk

N

)

+ b sin

(

2πk

N

)]

Because there are only N distinct values of the sines and
cosines, they can be easily precomputed and fetched from
a texture.

After the last step of DIF, the data comes out in bit-
reversed order. Reordering can be easily embedded into
the last step of DIF, where we sample with bit reversed co-
ordinates.

A single auxiliary data texture is used, see figure 4.
Channelx contains the values +1 or -1 denoting addition
or subtraction (as shown in figure 3). Channely holds the
coordinate of the other texel from the current pair. Chan-
nelsz andw are used for the values of the corresponding
sines and cosines. For the last step of DIF, no sines and
cosines are needed and channelzholds the bit-reversed co-
ordinate of the current pixel.

It is crucial for data persistence to map output pixels di-
rectly to input data texture texels. Figure 5 shows a naive
mapping of a 4x4 texture into a 6x6 window. The origin of
the pixel coordinates is different from the origin of textur-
ing coordinates. Therefore, we need to shift the texturing
quadriliteral in a corresponding way.

The algorithm described here operates with complex
numbers and is suitable for monochromatic images or



Figure 2: Decimation in frequency 2-radix butterfly net-
work for 8 values

Figure 3: Detail of one “butter-
fly” from the DIF network

for images with two channels. Three (RGB) and four
(RGBA) channels can be processed by the means of hyper-
complex quaternion Fourier Transform (QFT). Quaterions
are hyper-complex numbers with four dimensions – one
real and three imaginary – i, j, k. The problem of QFT is
described in [1].

Another and more straightforward approach to three-
and four-channel images is representing the channels as
real and imaginary parts of two images and performing two
FFTs in parallel. Most of the instructions can operate on
both FFTs at the same time thanks to the swizzle operator
and therefore the slowdown is relatively small. We em-
ployed this method in our measurements.

3.2 Convolution in spatial domain
Convolution of two discrete functions over a finite in-

terval is defined as follows:

y(k) =

N
∑

n=0

x(k − n)h(n), n ∈ 〈0, N〉 .

In the case of image processing, one function represents
the image and the other is the kernel of a filter.

The implementation of convolution on a GPU must re-
flect the size and type of the filter kernel. The bigger the
kernel, the more operations have to be executed per pixel.
This can be easily implemented using a loop but we are
limited by the maximal number of instructions the shader
can execute per pixel. This limit is very strict with SM
(Shader Model) 2.0 while SM 3.0 offers more freedom and
allows much bigger kernels to be used.

Another aspect is the separability of the kernel. A sepa-
rable kernel can be decomposed into two one-dimensional

convolutions and can thus save many instructions –
quadratic complexity becomes linear.

An optimized GPU implementation stores the kernel as
well as the sampling coordinates in a uniform array which
is precomputed on the CPU.

4 Comparison and Discussion
All implementations and measurements were done on

a machine with 2.6GHz Intel Celeron D processor, 1GB
RAM and NVIDIA GeForce 6600 GT 128MB at PCI-
E. Programs were implemented using HLSL and DirextX
9.0c. Both the CPU and GPU are typical mainstream hard-
ware of the beginning of 2005.

The GPU implementations of both the FFT and spa-
tial convolution clearly outperform CPU versions. Figure
6 charts performance results for spatial convolution (for
textures 256x256 and 512x512) – 32bit GPU version is 3
times faster than the CPU implementation and 16bit GPU
version gives an average speedup of 7.4 over 32bit CPU
implementation (16bit precision brings no advantage on a
32bit architecture).

Complex FFT of a 256x256 texture took 5.9ms on the
GPU while CPU implementation took about 20ms – i.e.
the speedup of 3.4. For the CPU FFT algorithm we used
FFTW libraries by M. Frigo and S. G. Johnson [2]. It is a
heavily-optimized algorithm that uses advanced features of
today’s CPUs. Multiplying the transformed data array with
a filter took additional 20ms on the CPU while it added
only about 0.1ms on the GPU.

Basic performance

In the basic performance test we compared the framerate of
a Gaussian low pass filter applied by convolution and FFT



to a simple testing scene. If not stated otherwise, we used
the monochromatic version of FFT. Three textures of the
sizes 256x256, 512x512 and 1024x1024 were used. Image
7 shows the framerates of FFT compared to separable and
unseparable convolutions with different kernel sizes.

As we can observe in the chart, the ratio of framerates
of convolution and FFT is not the same for different texture
sizes. This can be explained by the number of elementary
computation steps. The computational complexity of fil-
tering a N by N texture with separable convolution is

O
(

2k · N2
)

,

wherek denotes the size of the kernel – every pixel gets
convoluted with the whole kernel inx andy dimensions.
With FFT the time increases to

O
(

4N2 · log
2
(N)

)

– each pixel is processed inlog
2
N steps that reapeat four

times – for both dimensions and for forward and backward
transforms.

Applying filters by separable convolutionsis much
faster than by the FFT for small filter kernels. Thesize
of the kernelfor which convolution is still faster than FFT
depends on the size of the texture. In our tests it lies
between 31 and 41 pixels for monochromatic FFT. The
RGBA version of FFT is slightly slower. Due to optimiza-
tions in the GPU, the same instructions run faster when two
components (z,w) of the processed four-vectors are zero,
which is the case of monochromatic and two-channel FFT.
Quaternion Fourier Transform was not tested, but its com-
putational complexity should be comparable to our four-
channel version of FFT.

The situation is different forunseparable filter kernels
(e.g. edge detection in a given direction). The complexity
is

O
(

k2 · N2
)

,

making it very slow. Another limitation is the number of
instructions the pixel shader can execute. Due to this limi-
tation, the largest odd-dimension filter we could implement
was 9 by 9 (maximum number of samples per pixel was
112). Separable convolutions are limited by this feature as
well.

Multiple filters

There are many applications, including tone mapping op-
erators like [3, 4], that process the original scene by multi-
ple filters, evaluate the results and compose the final image
based on the results of individual filters. While convolution
has to be repeated for every applied filter, with FFT there is
only one forward transform, and multiple backward trans-
forms. This phenomena is depicted in figure 8. It plots
the framerates of multiple filters being applied to the same
scene.

As we can see in the chart, the FFT becomes gradually
more efficient with the increasing number of filters. While
it is approximately as fast as convolution with a 33 pix-
els wide kernel for one filter, it reaches the performance of
convolution with a 21 pixels wide kernel for eight filters.

Bit depth of textures

Another issue is the bit depth of textures that can be used
with these techniques. Because the FFT requires many
passes, 16 bits per channel are necessary even for non-
HDR images. Convolution in spatial domain can be done
with only 8 bits per channel in case the application does
not require higher range. The bit depth has a major impact
on the speed – the speed ratios for 8 bit integer and 16 and
32 bit floats per channel are approximately 4:2:1.

The overview of major pros and cons of the convolution
and the FFT is recapitulated in table 1.

Figure 4: Scheme of the auxiliary
texture for FFT

Figure 5: Mapping pixels to
texels



Figure 6: Comparison of GPU and CPU implementa-
tions of convolution (textures 256x256 and 512x512)

Figure 7: Comparison of FFT and convolution,
16 bit float textures

Figure 8: Comparison of FFT and convolution
for multiple filters, 256x256, 16 bit float tex-
tures

5 Conclusions

In this article we have proposed new solutions of GPU-
implementation issues for two main approaches to image
filtering – the convolution and the fast Fourier transform.
We have performed several measurements to asses the per-
formance of these two approaches.

The results show that GPU implementations of both the
convolution and the FFT outperform their CPU counter-
parts. Convolution on GPU performs better than the FFT
on GPU when we want to apply simple and small filters.
Separable convolution allows more optimizations, because
for kernels up to approximately 100 pixels in size all the
values and texturing coordinates can be precomputed and
stored in a uniform data array. This offers a significant
speedup in comparison with storing the values in textures

or computing them directly.
However, the fast Fourier transform can outperform

convolution in several cases:

1. When applying multiple filters on the same image –
with FFT, we only need one forward transformation.

2. Unseparable filter kernels – i.e. the edge detection
filters in chosen directions. Convolution of unsepa-
rable filters has quadratic complexity and therefore
becomes very slow when increasing the kernel size.
Furthermore, it is strictly limited by the number of
instructions a GPU can execute.

3. Very large filter kernels – more than 33 pixels for
one or two channel images, more than 51 pixels for
three or four channel images.



FFT Convolution

+ Takes the same time for all filters - Complexity depends on the size of the kernel. Can be
slow for large or unseparable kernels.

+ No hardware restrictions on filters - The size of the kernel is limited by the graphics hard-
ware

+ Works with all frequency filters - Suitable kernels do not exist for all filters
+ Slowdown due to multiple filters is smaller than with
convolution

- Multiple filters introduce significant slowdown

- FFT is time consuming + Very fast for small kernels
- Many passes make FFT sensitive to precision, requires
at least 16 bits per channel textures even for non-HDR
applications

+ Precision is not critical, 8 bits per channel textures may
be used for non-HDR applications

- RGB (RBGA) images require more complicated quater-
nion Fourier Transform or two standard FFTs that both
introduce a slowdown

+ Works for RGBA without problems

- Correctly handles only images with dimensions that are
powers of two, images of different sizes have to be ex-
tended and filled with zeros

+ Any image size is possible

Table 1: Pros and cons of the two approaches

Acknowledgements
This project has been partly supported by the Ministry

of Education, Youth and Sports of the Czech Republic un-
der research program No. Y04/98: 212300014.

References
[1] Bas, P., Le Bihan, N., Chassery, J. 2003.Color Image

Watermarking Using Quaternion Fourier Transform.
Laboratoire des Images et des Signaux INPG/CNRS.

[2] Frigo, M., Johnson, S. G. 2005FFTW. Fast Fourier
Transform library. http://fftw.org

[3] Krawczyk, G., Myszkovski, K., Seidel, H. 2005. Per-
ceptual Effects in Real Time Tone Mapping.Pro-
ceedings of the 21st spring conference on Computer
graphics, 195 - 202.

[4] Mantiuk, R., Myszkowski, K., Seidel, H. 2004. Vis-
ible Difference Predicator for High Dynamic Range
Images.IEEE International Conference on Systems,
Man and Cybernetics, 3, 2763 - 2769.

[5] Moreland, K., Angel, E. 2003. The FFT
on a GPU Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardwaresession: Simulation and computation, 112
- 119.

[6] Pharr, M. et al. 2005GPU Gems 2: Programming
Techniques for High-Performance Graphics and
General-Purpose Computation.NVIDIA, Addison-
Wesley.

[7] Smith, S. W. 1997.The Scientist and Engineer’s
Guide to Digital Signal Processing. California Tech-
nical Publishing.

[8] Somanaweera, T., Liu, D. 2005. Medical Image Re-
construction with the FFT. InProgramming Tech-
niques for High-Performance Graphics and General-
Purpose Computation, Addison-Wesley.

[9] Thompson, W., Shirley, P., Ferwerda, J. 2002. A Spa-
tial Post-Processing Algorithm for Images of Night
Scenes. InJournal of Graphics Tools7, 1, 1-12.


