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Abstract Large-scale visual geo-localization has recently gained a lot of at-
tention in computer vision research and new methods are proposed steadily.
However, surveys of visual geo-localization methods are rare and they focus
mainly on city-scale localization methods. We present a comprehensive and
balanced study of existing visual geo-localization domains, including city-scale,
global approaches and methods for natural environments. We overview the
methods to show their pros and cons, application domains, datasets, as well
as evaluation techniques. We categorize the reviewed methods by two crite-
ria. The first is the type of data the method uses for geo-location estimation.
The second criterion is the target environment for which the method has been
proposed and validated. Based on this categorization we analyze important
conditions that must be considered while solving geo-localization problems.
Each category is in a different state of research – while city-scale image-based
methods received a lot of attention, other categories like natural environments
using cross-domain data sources are still challenging problems under active
research. Future research of large-scale visual geo-localization is discussed, pri-
marily the challenging and new research category – geo-localization in natural
environments.
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(a) Category: global1 (b) Category: city-scale2 (c) Category: natural3

Fig. 1: Illustration of visual geo-localization categories.

1 Introduction

Billions of images and videos on the Internet comprise big amount of valuable
information covering ever growing geographic areas. However, despite prolifer-
ation of GPS-equipped cameras and mobile devices, the majority of available
media still lack the geotag information; according to Flatow et al. [24] (2015)
there is around 2% of geotagged media on Twitter and 25% on Instagram.

Location gives the context and it is essential for image and video recog-
nition. Important applications are crucially dependent on the location knowl-
edge, e.g., model based image enhancement [47], augmented reality [59,65,
9], self-driving vehicles [14,52], and more. Additionally, visual geo-localization
could help existing non-visual localization systems to achieve higher precision
and robustness.

Hays and Efros [33] introduces visual geo-localization as “. . . estimating
a distribution over geographic locations from single image. . . ,” Zamir and
Shah [93] define the problem as “. . . estimating the geo-location of a query
image by finding its matching reference images,” 4 and Bansal et al. [10] say
“Given a ground level street view (SV) image in an urban area, we want
to determine the geo-location of the camera in the absence of any metadata
(GPS or camera parameters).” In summary, we define visual geo-localization
as finding the geographic coordinates (and possibly the camera orientation)
for given query image.

The problem has several variants – we can use initial GPS estimate in
small scale geo-localization problems, or no initial estimate in large scale geo-
localization variant. Sometimes, there is an assumption that we know the

1 Credit: Neil Palmer (CIAT) – Amazonia, Michael Pazzani – Caribbean Island, Thomas
Pintaric – Los Angeles Dowtown

2 Credit: Myrabella – Paris from Notre Dame, Diliff – Les Invalides
3 Credit: Felix Lamouroux – Zermatt Panorama, Marcel Wiesweg – Matterhorn
4 Author’s note: in a reference database of geo-tagged images.

https://commons.wikimedia.org/wiki/File:Amazon_CIAT_(3).jpg
https://flic.kr/p/7soYNz
https://commons.wikimedia.org/wiki/File:DowntownLosAngeles.jpg
https://commons.wikimedia.org/wiki/File:01_vue_Paris_depuis_Notre-Dame.jpg
https://commons.wikimedia.org/wiki/File:The_Dome_Church_at_Les_Invalides_-_July_2006.jpg
https://flic.kr/p/dVBaDT
https://commons.wikimedia.org/wiki/File:Matterhorn-EastAndNorthside-viewedFromZermatt_landscapeformat.jpg
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camera intrinsics such as field-of-view (FOV), but in many practical scenar-
ios this information may not be available making the geo-localization task
even harder. Visual geo-localization in context of data mining from social me-
dia was reviewed by Ji et al. [39].

1.1 Classification of the visual geo-localization methods

We classify the works in this survey by two main criteria. The first crite-
rion is based on type of input data. We recognize two main classes of meth-
ods – image-based methods, and methods utilizing data of multiple modalities.
Image-based methods use large GPS-tagged image databases to infer the lo-
cation of the query image. These methods can be used to precisely locate (up
to several centimeters in some cases) images mainly in highly urbanized areas,
with high density of ground level imagery available online. Methods utilizing
data of multiple modalities use more information, beyond a simple image
database. Mostly, the methods make use of digital elevation models (DEM) [7,
9,65,87], orthophoto maps, attribute maps [56] or satellite imagery [38]. Such
methods were developed mainly for areas, where coverage by ground level
imagery is sparse, e.g., mountain areas, deserts, and other places with low
population density.

Categorization based only on type of data would not be enough, since the
categories may overlap. In order to distinguish between the methods better, we
add a second classification criterion – the environment for which the particular
method was developed. We divide the environment criterion into three classes:

– global – unrestricted geo-localization at the planet scale (Fig. 1a),
– city-scale – geo-localization in urban environments (Fig. 1b),
– natural – geo-localization in natural (non-urban) environments – e.g., in

the mountains (Fig. 1c).

The goal of global methods is to geolocalize query image without prior assump-
tion about the environment type. The ability of geo-localizing single image in
the whole world is appealing, but the existing methods provide poor accuracy.
The localization is considered as successful, if the query image is localized
within 200 km from the ground truth position [33].

City-scale methods are designed to localize more precisely, assuming the
query image resides in a specific urban area. Natural methods are specialized
as well – the published methods are targeted to a specific natural environment
such as deserts or mountains. There are principal differences at urban and
natural environments that determine the complexity of the respective geo-
localization problem:

Data Availability. Dozens of photos of attractive places and landmarks in
highly populated areas – Flickr API returns more than 200 K photos con-
taining the tag “Eiffel Tower” and more than 100 K photos containing the
tag “Statue of Liberty” (2016). Such abundance of data enables image to
image search with Bag-of-Words, feature based techniques, and SfM model
matching.
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Well Defined Objects. Man-made objects with distinctive and stable ap-
pearance, such as buildings, bridges, road signs, etc., can be well rec-
ognized and matched. Moreover, mutual arrangement of such objects in
space is often unique, which can be used for localization. On the other
hand, in natural environments, objects are rather unlikely to match well –
e.g., mountains, foliage and clouds. Those are difficult to recognize because
of inconsistent appearance (weather and illumination changes, vegetation
growth) and frequent occlusion of such objects in the real world.

Repetitive and Self-Similar Patterns. Urban environments contain repet-
itive objects like windows, lamps, and logos. In natural environments a lot
of fractal and self-similar patterns can be found. All these aspects make
the visual geo-localization difficult task.

Such specific issues narrow down the options for solutions of geo-localization
in a particular environment. Broad overview of visual geo-localization meth-
ods in connection with the introduced classification is presented in Section 2.
The environment specifics led to the development of various datasets, which
we summarize in Section 3. In Section 4 we compare usual evaluation methods
for visual geo-localization. We review the key geo-localization methods in Sec-
tion 5. Finally, we summarize important visual geo-localization applications
in Section 6.

2 Overview of the visual geo-localization methods

In this section, we briefly summarize the breadth of existing methods with
respect to classification introduced in Section 1 – image-based methods, and
methods using data of multiple modalities. For detailed review of the most
influential methods, please refer to Section 5. All the overviewed methods are
summarized in the Table 1.

2.1 Image-based methods

Image-based methods are used when sufficient amount of reference images is
available. Image retrieval methods use big databases of GPS-tagged images
to infer the location of a query image by retrieving similar images using var-
ious matching algorithms. Structure from Motion localization methods use
3D reference model constructed using geometrical relationships between many
overlapping images. Thanks to this fact, not all images need to contain explicit
GPS tags.

2.1.1 Image retrieval

We identified two main approaches to visual geo-localization via image re-
trieval. The first (non-parametric) option is to search for similar images in
large geo-tagged image database, and to infer the query image location based
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on location of the most similar database images [69,97,75,40,94,95,93,60]. The
second (parametric) option is to train classifiers or regressors, given the geo-
tagged database of images as a train set, to directly predict the geo-coordinates
of the query image [90,44].

First attempts to localization by image retrieval were published by Robert-
son and Cipolla [69]. They created a database of two hundred photos of recti-
fied facades in Cambridge city center. For rectification, an automatic method
by Kosecka and Zhang [48] finding vanishing points was used. Facade positions
were manually annotated with respect to the 2D map to connect each fa-
cade with meaningful coordinates. For matching, sum of squared differences of
patches centered around the Harris key points was used. The method does not
scale well, since it matches the query image against all images in the database,
which would lead to prohibitive run times on bigger image databases.

Zhang and Kosecka [97] extended the former approach by using database
of SIFT feature descriptors [58]. Images were GPS-tagged, so no manual an-
notation of correspondences with map was needed. Still, the coarse matching
stage was implemented as a simple voting to every document in the database
causing high computational complexity. Best five candidates were verified and
sorted by RANSAC [23], and the final location was found by triangulation of
the best candidates.

One of the first methods for large scale localization in a city was developed
by Schindler et al. [75]. They tested the method on 20 km of street-side imagery,
which was publicly released as a dataset. As we find this work very important,
we add more description in Section 5.2.1.

The problem of place recognition was studied by Johns and Yang [40].
They improved the Bag-of-Words (BOW) technique [78] by clustering the
image database of 200K images to visually similar scene models (landmarks).
However, their results show only marginal improvement compared to standard
BOW technique.

Zamir and Shah [94] used dataset of 100K geo-tagged images downloaded
from Google Street View. They used a nearest-neighbor tree search with addi-
tional steps of pruning and smoothing for better accuracy. Furthermore, they
developed a measure called Confidence of Localization which quantifies the
reliability of the localization of a particular query image using Kurtosis of a
normalized voting space.

The problem of using image database with noisy GPS tags was also studied
by Zamir et al. [95]. For a query image several matches from image database are
found. Triplets of the query image and two database matches are formed. From
these triplets the geo-location can be estimated directly for correct locations
of image pairs. The authors propose a method using random walks to correct
the geo-locations of noisy GPS positions.

Zamir and Shah [93] used dataset from Google Street View, which is a super
set of 100K dataset presented in their previous work [94] (for more informa-
tion about datasets please refer to Section 3). They aimed to further improve
nearest-neighbor matching by pruning outliers, and by incorporating approx-
imate feature matching using generalized minimum clique problem (GMCP).
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The authors compare their method to Schindler et al. [75], and to their pre-
vious work [94]. They show that the new method has lower localization error;
it was able to localize more than 55% of the query images within the error
of 250 m, whereas their previous method [94] localized 50% and Schindler et
al. [75] localized only 46% within the same error.

An interesting problem of place recognition in changing conditions, such
as changes between day and night or winter and summer, was explored by
Mishkin et al. [60]. They adopted a BOW method with multiple detectors,
descriptors, view synthesis, and adaptive thresholding to cope with large visual
changes of the environment.

First global visual geo-localization method was published by Hays and
Efros [33,34]. They created a database of various features from 6M images
distributed around the whole Earth. Density of retrieved nearest neighbors
was used to estimate the location of a query image. For more information,
please refer to Section 5.1.1.

Global geo-localization was also recently studied by Weyand et al. [90].
They developed a technique using Convolutional Neural Networks that are
trained to directly estimate the geo-location of a query image. For this purpose
a dataset of 126 million images was used. More details about this work can be
found in Section 5.1.4.

At the border of our interest lie landmark recognition techniqes, which we
review briefly. Li et al. [53] use BOW technique combined with multiclass SVM
to learn landmark classification. Zheng et al. [98] combine GPS-tagged images
from online services and a textual tour guide with unsupervised learning to
build a world-scale landmark database. Avrithis et al. [5] studied the prob-
lem of separating landmark and non-landmark images using improved BOW
method. Chen et al. [17] studied a problem of landmark detection on mobile
devices using on-board GPS estimates. The main contribution of their work
is publicly available dataset for landmark recognition and localization (see
Section 3).

2.1.2 Structure from Motion

Structure-from-Motion (SfM) is a set of techniques to reconstruct a 3D scene
from a set of overlapping 2D images depicting the same scene from differ-
ent viewpoints. The correspondence of 2D imagery with the 3D model allowed
researchers to develop techniques for localization and camera orientation (cam-
era pose estimation) from a single image and camera pose tracking from a con-
tinuous series of images. The reconstructed 3D model consists of 3D points,
positions and orientations of the cameras of the source imagery. An advantage
of such datasets is that the camera pose reconstruction of the query image can
be very precise, with error up to units of meters.

Building 3D models from tens of million images using SfM techniques have
been thoroughly studied [32,13,79,80,1,28,20,35]. Heinly et al. [35] automat-
ically created models of many places around the whole world from 100 million
photos from a Yahoo image dataset [85] in six days on a single computer. SfM
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models are usable in highly urbanized areas and near important landmarks.
Irschara et al. [37] used several hundreds of photos to create an SfM model
of the most famous landmarks in Vienna. Relevant photos in the SfM model
were searched for by the standard image retrieval (BOW) approach. They
successfully registered majority of frames of four test videos, and test images.
The authors also presented a compression technique to reduce the number of
images needed to cover the 3D scene.

Li et al. [55] developed a location recognition approach which prioritizes
features from a SfM model to be matched against query features. They show
that defining priorities based on properties of features in the SfM model and
application of Feature-to-Point (2D-to-3D) matching play a key role in im-
provement of matching performance on Dubrovnik and Rome dataset (see
Section 3.2).

Sattler et al. [71] proposes a technique of direct 2D-to-3D matching. They
assign feature descriptor to each visual word and match directly query feature
descriptors to descriptors in relevant visual words. They show improvement
in matching performance, while keeping reasonable response times (fractions
of a second). In a follow-up work by Sattler et al. [72] the ideas of 2D-to-3D
and 3D-to-2D were combined and formulated into an Active Correspondence
Search, which improved both time and matching performance.

Problems of image retrieval methods connected to localization were stud-
ied in the next work by Sattler et al. [73]. Algorithms using direct feature
descriptor matching outperform classical image retrieval approach by 15%.
The problems in image retrieval approach causing this performance gap were
identified and addressed by introducing selective voting for image retrieval
approach. This method slightly outperformed the direct descriptor matching.

Amongst the first works addressing large scale localization based on SfM
model was an approach by Li et al. [54]. They presented a method able to cope
with hundreds of thousands of images using a coocurence prior for RANSAC
and bidirectional matching of image features with 3D points, which is a similar
idea to the Active Correspondence Search presented by Sattler et al. [72].

Bergamo et al. [12] used SfM model to learn random forest codebook for
Landmark classification. The problem of landmark classification was further
approached by other authors [67,31], but it is out of the scope of this survey.

Swärm et al. [82] incorporated the knowledge about gravity direction in
the query image obtained from gravitational sensors. Their method can handle
large amount (up to 99%) outliers.

Localization on large datasets (hundreds of thousands images in the SfM
model) poses new problems, namely large memory footprint of the model and
strictness of the SIFT descriptor ratio test. These problems are approached by
Sattler et al. [70], by quantizing descriptors to reduce the search space, while
incorporating a new voting strategy to remove ambiguous matches.

The work by Zeisl et al. [96] on large scale geo-localization using SfM model
also tackles the problem of large fraction of outlier matches. The authors
build on Svärm et al. [82], utilizing geometric constraint of gravity direction
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on camera and incorporate them as well as additional constraints into the
camera pose voting.

Kendall et al. [45] used SfM model to train a convolutional neural network
for large scale camera relocalization. Their experiments operate on 50 000 km2,
and have very accurate results – the authors report 2 m and 3° in outdoor
areas, and 0.5 m and 5° in indoor areas.

2.2 Methods using data of multiple modalities

Unlike image-based methods, methods leveraging data of multiple modalities
use additional input data to to find camera location for a query image. A popu-
lar choice is cross-domain matching of a query image and a terrain model, with
utilization of features like horizon lines, ridges, and edge maps. Simulataneous
Localization and Mapping aims to localize a camera in unknown environment
and to simultaneously create a map of that environment. Methods using other
input data like ortho photo maps combined with attribute maps, bird’s eye or
satellite weather imagery were exploited. In this domain, mainly methods for
outdoor, non-urban environments are considered. This is due to the nature of
areas with lower density of population – for image based methods there is not
so many ground-level imagery, so other sources are used.

2.2.1 Methods using terrain models

The main motivation for the first visual geo-localization works was the need
for localization of mobile robots and planetary rovers in outdoor environments.
One of such works was presented by Talluri and Aggarwal [83,84]. They use
DEM model, and the robot is equipped with digital compass, altimeter and a
monocular camera, that can be panned and tilted. The localization is achieved
by matching horizon lines extracted from a query image against those rendered
from DEM. The authors conducted experiments on 1.41 km2, with the area
sampled uniformly with the distance of samples of 30 m.

Stein and Medioni [81] use horizon lines for localization as well. They create
a database of synthetically rendered 360° horizon lines using DEM. Horizon
lines are approximated by polygons, from which the database is created. Hori-
zon from an input query image is extracted semi-automatically, encoded into
the same format as horizons in the database against which it is matched. The
best candidates are verified geometrically.

Localization using horizon line was further studied by Naval et al. [64,
63]. In these works, the skyline from query image is extracted by multilayer
perceptron neural network classifier. As local feature points, the peaks are
used – they are detected in both query image and the DEM. Pose of the query
is calculated using three feature points from the database via minimization of
error function using nonlinear least squares.

Woo et al. [91] studied navigation of UAV in mountain areas using DEM
and infrared (IR) images with known altitude using altimeter. Infrared spec-
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trum was used to tackle the visibility problems during the night and bad
weather conditions. From a series of frames the peaks were extracted and spa-
tial reconstruction of peaks in 3D was achieved by the factorization method.
Next, 3D positions of peaks from query frames are matched to peaks extracted
from DEM, and the pose is hypothesized. Finally, synthetic horizon from DEM
at hypothesized location is aligned with query horizon to confirm or reject the
estimated location.

City-scale visual geo-localization method based on fisheye images of the
urban canyons was published by Ramalingam et al. [68]. The method takes
an omni-skyline image, extracts the skyline defined by buildings and matches
this skyline into database of synthetically rendered skylines. The method is
usable in cities which have very tall buildings, like New York.

Hammoud et al. [30] extend the extracted horizon line from query image by
LIDAR and Hyper-Spectral Land Use/Cover imagery. They match the inputs
separately and combine them by linear fusion into single probability map. The
authors validated their approach on 100 query images on two world regions,
each of area 10 000 km2.

Baatz et al. [7,74] were the first to develop factually large scale visual local-
ization solution in outdoors (on an area of 40 000 km2). The method uses large
database of extracted features from horizon lines, called contourletts. The con-
tourletts are dense representations of normalized and smoothed horizon lines
stored as a single integer. For localization, they use bag-of-words like approach
to retrieve the best 1000 candidates, which are geometrically verified to find
the best matching locations. Thanks to direction&location voting strategy and
geometrical verification of horizon lines, the method is able to estimate both
location and coarse heading of the camera. For detailed description please refer
to Section 5.3.1.

Tzeng et al. [87] presented a similar work to Baatz et al. [7]. The idea of
using database of horizon features generated from redered DEM and search-
ing for horizon features from query image is the same. The difference is that
concavities of horizon line parts were used as a local features.

An advanced approach based on horizon lines was presented by Chen et
al. [18]. The authors build on the approach presented by Saurer et al. [74], and
they extend the local feature descriptor utilizing multiple ridge lines, not only
the horizon line. The feature extraction is the same as in Saurer et al. [74].
The key difference is in the voting stage of BOW, where the documents are
voting not only for horizontal, but also for vertical direction. The authors
tested their method on 10 000 km2 and showed that their results were better
than the results of Saurer et al. [74].

2.2.2 Simulataneous Localization and Mapping

Visual Simultaneous Localization and Mapping (V-SLAM) is also relevant to
the topic of visual geo-localization when performed outdoors. Generally, SLAM
methods make use of various inputs, like RGB image combined with depth,
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stereo, lidar sensors, GPS, etc. We focus on the works relevant to visual geo-
localization, surveying the works utilizing only the single camera input. Since
SLAM methods are focusing on continuous localization in time, we separated
these methods from the problem of visual geo-localization of a single image.

An approach by Middelberg et al. [59] for 6 degrees-of-freedom (6-DOF)
localization on mobile devices uses large offline SfM point cloud at server, and
small keyframe-based SLAM [46] model on the mobile device. The keyframes
are matched against the offline SfM model to avoid drift, while normal frames
are processed on the device to estimate the motion frame-by-frame.

Hakeem et al. [29] proposed an offline method for estimating trajectory
of a moving camera. They use a database of GPS-tagged photos to match
keyframes with, and from the best matches they calculate essential and fun-
damental matrices to recover camera pose. Triangulation step is used to dis-
ambiguate the scale. To obtain smooth trajectory, the obtained locations are
interpolated using B-splines.

Conte and Doherty [19] used geo-tagged image database in combination
with KLT feature tracker [86] to address the problem of GPS signal outages of
unmanned area vehicle (UAV). The visually tracked position was fused with
the inertial measurement via on-board sensors through Bayesian framework.

Method by Vaca-Castano et al. [88] for trajectory estimation in a city is
built on top of localization method by Zamir and Shah [94]. Each keyframe is
localized using the discussed method, and Bayesian filtering enforcing temporal
coherency is used. As the results are often noisy and exhibit false loops, the
final trajectory is constructed using Minimum Spanning Tree (MST) based
algorithm.

Larnaout et al. [50,51] combine classical SLAM methods with elevation
constraint taken from digital elevation map (DEM), because the height of the
SLAM vehicle is constant. They also add a 3D buildings model as a constraint
to the reconstructed 3D point cloud.

2.2.3 Methods using other input data

Baatz et al. [6] researched a method for localization in urban environment.
They use panoramic street-view images and extruded floorplans of buildings to
build a database of rectified images (by mapping the facades onto the extruded
3D models). Query image is also rectified based on vanishing points, which
reduces the matching problem to 2D homothety. Detailed description of this
method can be found in Section 5.2.2.

Data driven solutions aim to learn the relationship between a photograph
and the land cover appearance based on a geo-tagged ground-truth dataset.
As in the case of Lin et al. [56], the geo database is created from several
corresponding data sources. The idea is to match input query photo against
the database created by the triplets of ground level image, aerial ortho photo
map and attribute map. Detailed description of this method can be found in
Section 5.1.2.
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The idea of cross-view matching was researched by Workman et al. [92],
who approached the problem by adapting a convolutional neural network
(CNN) (pre-trained on Places [99] dataset) to extract similar features from
ground level photographs and aerial ortho photo maps. Nearest neighbors
were used as candidates ranked by calculating euclidean distance between the
ground level and aerial features. The authors also developed a large dataset
having over 1.5 million geo-tagged matching pairs. The authors claim their
method is the state-of-the-art in cross-view geo-localization, which is suported
by 6% improvement in comparison to previous work by Lin et al. [56].

Lin et al. [57] presented similar work to Workman et al. [92]. They use
CNN for the cross-view matching, but they use Google Street View and aerial
“bird’s eye” imagery, which is captured tilted compared to classical aerial ortho
photo imagery taken orthogonally to the terrain. They used CNN pre-trained
on ImageNet and Places [99] databases. The results are currently far from the
practical application; 80% of correctly localized queries are contained in 20%
of top candidates.

Aubry et al. [4] developed a method to register an artistic painting with a
3D model, which also implies pose of the camera. For matching, they mention
the possibility to use exeplar-based SVM classification introduced by Shri-
vastava [77]. Based on this approach they developed a new method to avoid
training SVM classifiers. They tested the method on a variety of historical
paintings, which they successfully registered with the 3D model.

Viswanathan et al. [89] developed a method for robot localization by match-
ing Google Street View panorama to aerial ortho photo map. They warp the
street view panorama to bird’s eye view (top down) and they use standard
matching techniques using various features like SIFT, SURF, FREAK, etc. In
their scenario, SIFT proved to have stable performance throughout the test
set.

Ardeshir et al. [3] exploit semantic GIS information from a GIS database,
such as locations of fire hydrants, traffic signals, road signs and other objects to
improve object detection. Image metadata as GPS location, FOV and heading
are used as a hypothesis to match the objects in the query image against the
objects obtained from the GIS database under given viewpoint. Based on the
object detection, the authors also developed a method of camera localization.
Location hypotheses are generated on uniformly sampled grid, excluding the
areas covered by buildings (only streets are considered). For each hypothesis,
the object detection method is used and location-orientation score is calcu-
lated.

The geographic coherence in image sequences may be also used for camera
localization. Jacobs et al. [38] exploit sequences of frames from static outdoor
cameras correlated with satellite imagery for location estimation. Kaloger-
akis et al. [41] learn human travel priors from 6 million database of images
from Flickr web service. Their approach is able to geo-localize image sequences
from user gallery, with the use of timestamps to calculate probable locations
based on the learnt prior. Kelm et al. [43,42] use video key frames combined
with textual features to find the most probable regions of origin.
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Multimodal aproaches exploiting textual tags or other information also
exist. Global geo-localization method by Gallagher et al. [26] used database
containing over million of geo-tagged images and user-defined textual tags.
The user tags from a query image are used in the matching process in parallel
with several other visual features like GIST, color histograms, tiny images and
bag of textons.

2.3 Camera orientation estimation

Camera orientation estimation problem is also related to visual geo-localization.
Some visual geo-localization methods are designed to retrieve the camera orien-
tation, especially SfM [37,54,82,59,45], or horizon-based and DEM matching
approaches [66,30,87,18,74]. However, some methods, like image-based and
cross-view visual geo-localization methods are unable to deliver camera orien-
tation [33,56,57,90]. In such cases, the geo-localization and camera orientation
methods could be used together in order to retrieve full 6-DOF pose.

Kosecka and Zhang [48] presented algorithm for camera orientation estima-
tion based on vanishing points. This method is suitable for urban indoor and
outdoor scenes, as the detection of vanishing points is based on line segments.
The line segments can be detected in urban scenes easily, while in natural
scenes they are present sparsely.

Several approaches for camera orientation estimation for natural scenes
exist. Behringer [11] matches synthetic panoramic horizon line to horizon line
detected in query image. This approach was extended by Baboud et al. [9],
who presented an algorithm for robust silhouette matching. Since it matches
the synthetic and the query edge maps, it is much more robust to occlusion
than methods using horizon line only. More details about this method can be
found in Section 5.3.3. Baatz et al. [7] published camera orientation algorithm
based on matching sematnic areas in the image, like forests or rivers. Effi-
cient camera orientation refinement was approached by Porzi et al. [65]. They
use smartphone sensors as an initial estimate, which is refined by silhouette
matching algorithm similar to [9].
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method class environ. test area local. succ.
max.
err.

Robertson [69]

im
ag

e-
b

as
ed

,
re

tr
ie

va
l

city
single
street

95% N/A

Zhang [97] city city part
72%

on ICCV
2005 Cont.

16 m

Schindler [75] city single city 70% 10 m

Hays [33] global Earth 16% 200 km

Zheng [98] global
Earth

landmarks
accuracy

80.8%
N/A

Li 09 [53] global
Earth

landmarks
40.58%

visual&tags
1 of 500
landm.

Zamir 10 [94] city
240 km of

street-view
78%, vs.
[75]: 39%

250 m

Chen 11 [17] city single city 65% N/A

Johns [40] city landmark N/A N/A

Zamir 14 [95] city
several
cities

N/A N/A

Zamir 14a [93] city
several
cities

44% 100 m

Mishkin [60] global place P/R: 0.821
0.825 1 frame

Weyand [90] global Earth
37.6% on
IM2GPS

test set[33]
200 km

Irschara [37]

im
ag

e-
b

as
ed

,
S

fM

city landmark
39% within

top-10
candidates

N/A

Li 10 [55] city
Dubrovnik [55],

Rome [55],
Vienna [37]

92.4%
(Rome)

400 m

Sattler 11 [71] city
Dubrovnik [55],

Rome [55],
Vienna [37]

97.6%
(Rome)

400 m

Sattler 12 [72] city
Dubrovnik [55],

Rome [55],
Vienna [37]

99.1%
(Rome)

400 m

Sattler 12a [73] city
Aachen [73],
Vienna [37]

74-83% N/A

Li 12 [54] city
1 K

of landm.

73% on
Quad [20]

90%, images
under 10 m

N/A
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Hao [31]

im
ag

e-
b

as
ed

,
S

fM

city landmark N/A N/A

Bergamo [12] city landmark

95% on
Lan.-3D [31]

63% on
Lan.-620 [12]

N/A

Svärm [82] city Dubrovnik [55]
0.9975%

(Dubrovnik)
400 m

Sattler 15[70] city
San Fr. [54]
Landmarks

62.5%
(San Fr.)

N/A

Kendall [45]
city,

indoor
city part
building

2 m, 3° outd.
0.5 m, 5° ind.

N/A

Zeisl [96] city
San Fr. [17],

Dubrovnik [55]
0.9975%

(Dubrovnik)
400 m

Talluri [83]

m
u

lt
i.

D
E

M

natur. 148 km2 N/A N/A

Stein [81] natur. 298 km2 N/A N/A

Naval 97 [64] natur. N/A N/A N/A

Naval 98 [63] natur. 900 km2 avg. err.
393 m

N/A

Woo [91]
aerial,
natur.

2.28 km2 N/A N/A

Baatz [6] city single city 35%, or 85% N/A

Ramal. [68] city single city
avg. err.

2.8 m
N/A

Baatz 12 [7] natur. 40 000 km2 88% 1 km

Tzeng [87] natur. 10 000 km2 N/A N/A

Porzi [65]
natur.

(orient.)
100 places
in the Alps

avg. err.
1.87° 5.22°

Baboud [9]
natur.

(orient.)

28 photos
in the Alps,

Rocky
Mnts.

86% <0.2°

Hammoud [30]
mainly
natur.

20 000 km2 49% 14 km

Chen 15 [18] natur.
10 000 km2

(America,
Asia)

60% 4.5 km

Hakeem [29]

m
u

lt
i.

-S
L

A
M

city campus

avg. err
6 m

ICCV
Cont. 2005

N/A

Conte [19] natur.
N/A

(S. Sweden)
N/A N/A
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Larna-
out 12 [50]

m
u

lt
i.

-S
L

A
M city city-center N/A N/A

Larna-
out 13 [51]

rural,
city

rural, city N/A N/A

Middel. [59] city 40 km2 <1 m N/A

Jacobs [38]
m

u
lt

i.
-o

th
er

global
Pennsylv.,
Maryland

avg. err.
71.8 km

N/A

Gallagher [26] global Earth
33% on

IM2GPS
test set[33]

200 km

Kaloge-
rakis [41]

global Earth
58% on

IM2GPS
test set[33]

400 km

Baatz 10 [6] city single city
Earth-

mine 85%
Navteq 35%

N/A

Kelm 11 [43] global Earth 10% 1 km

Kelm 11a [42] global Earth 35% 1 km

Lin 13 [56] global 1 600 km2 17.37% N/A

Aubry [4] city landmark
55% good
matches

18%
no

match

Viswana-
than [89]

aerial,
natur.

c. 0.1 km2
31% matches

for top
10% cand.

N/A

Ardeshir [3] city
10 km2

Washing-
ton DC

60% for top
20% cand.

N/A

Lin 15 [57] city
several
cities

80%
20% of
cand.

Workman [92] global 40 000km2 22.7% N/A

Table 1: Overview and properties of geo-localization methods. Test area de-
fines the area on which the method has been tested in original publication,
localization success (local. succ.) denotes the best result achieved with given
method, and maximum error denotes the maximum distance from the ground
truth position which is considered to be correct localization. Abbreviations:
multi. = methods using data of multiple modalities, cont. = contest, cand. =
candidates, P/R = precision/recall, landm. = landmarks, mnts. = mountains,
tags = method uses also user defined tags for localization, San Fr. = San
Fransisco.
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2.4 Summary

The surveyed methods were classified as image-based methods and methods
using data of multiple modalities. The image-based methods were used mainly
for urban areas, while methods utilizing data of multiple modalities were used
mainly for localization problems outside city borders – in natural environ-
ments.

For image-based methods, three main methods for finding database matches
for a given query image can be identified. The first is Nearest Neighbour search
[75], the second is Bag-of-Words approach, [78], and the third approach is
Structure-from-Motion [79], which reconstructs 3D model from many overlap-
ping images, without the need of knowing GPS position of the images.

For methods using data of multiple modalities the approach of horizon line
matching is a popular technique [83,84,81,64,63,7,74,18]. Another popular
technique is a cross-view matching approach introduced by Lin et al. [56], and
further studied in other variants [92,57].

While image-based solutions are well established and achieve precise re-
sults, their use is limited. For urbanized areas there are algorithms for fast
and precise geo-localization, without the need of GPS sensor [59]. This is
obviously different, when we travel outside the borders of the cities. In nat-
ural environments, there is still lack of algorithms, that are fast, and more
importantly, precise. Still a lot of work has to be done, in order to have at
least similar precision as in the urbanized areas. For example, in the results
of Saurer et al. [74], distance under which the query is considered as correctly
localized is 1 km, which is still far from the results obtained by Middelberg et
al. [59], who report the localization error in meters. In case of horizon-based
localization proposed by Saurer et al. [74], 40% of query images need user
interaction for discovering horizon line, mainly due to tree occlusions which
arise in real world photos quite often. Furthermore, horizon occlusion by fog or
clouds cannot be addressed in this scenario. For such situations, more robust
features for matching such as edges or semantic segments like areas of forests,
glaciers, grassland, rocks, and stonefields are needed.

3 Datasets

Methods mentioned in this survey use several datasets, that can be used to
measure and compare existing and novel approaches to visual geo-localization.
For city-scale ennvironments, there exist various datasets acquired from on-
line webservices like Flickr, Panoramio, or Google Street View. On contrary,
datasets for visual geo-localization in natural environments are only sparse.
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3.1 Image-based datasets

Google Maps Street View Dataset 5 introduced by Zamir and Shah [93] con-
tains 102K images acquired automatically from Google Street View web site,
from Pittsburgh, PA and Orlando, FL. The dataset contains full 360° panoramic
images with distance of about 12 m between consecutive locations. This dataset
is suitable for precise localization and camera orientation estimation in urban
areas.

IM2GPS test sets IM2GPS approach by Hays and Efros [33] was trained using
6 million geo-tagged images acquired from Flickr web service. From this large
dataset, only the test sets containing several hundred of photos is available
online6.

YFCC100M: The New Data in Multimedia Research. 100 million dataset of
Yahoo Flickr images7 was published by Thomee et al. [85]. The images and
videos in this dataset is under Creative Commons licenses, making the data
easily usable for anyone. Compressed metadata for this dataset consists of
13 GB of data, and contain GPS locations (for 48 million of photos and for
100K videos), tags, timespan and camera information.

San Francisco Landmark Dataset Dataset of 1.7 million street-level images8

with ground truth labels, geotags, and calibration data was provided by Chen et
al. [17]. Challenging query set of 803 cell phone images taken few months after
the first part of the dataset is also present.

Visual Place Recognition in Changing Environments VPRiCE dataset9 for
changing environments from VPRiCE challenge 2015.

Alps100K dataset Dataset called Alps100K 10 composed by Čad́ık et al. [15]
was used in the original paper for elevation estimation. The fact, that it con-
tains data from Flickr which contains GPS coordinates, makes it usable also
for geo-localization tasks.

5 http://crcv.ucf.edu/projects/GMCP_Geolocalization/
6 http://graphics.cs.cmu.edu/projects/im2gps/
7 http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
8 https://purl.stanford.edu/vn158kj2087
9 https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pageId=

14188617
10 http://cphoto.fit.vutbr.cz/elevation/

http://crcv.ucf.edu/projects/GMCP_Geolocalization/
http://graphics.cs.cmu.edu/projects/im2gps/
http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pageId=14188617
https://roboticvision.atlassian.net/wiki/pages/viewpage.action?pageId=14188617
http://cphoto.fit.vutbr.cz/elevation/
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3.2 SfM datasets

Datasets for large scale SfM and location recognition/pose estimation. Several
datasets by Li et al. [55] for SfM problems are publicly available online11.
The biggest are the Rome16K and Dubrovnik6K, covering the most famous
parts and landmarks of the cities. Also variety of smaller datasets for famous
landmarks, like Notre Dame Cathedral, Tower of London, Trafalgar Square,
Vienna Cathedral and many more are available.

Quad dataset Crandall et al. [20] provide also SfM datasets. The Quad dataset12

consist of 6514 images, about 5000 images which originates from iPhone 3G
contains GPS information, and 348 images contain very precise GPS coordi-
nates (accuracy about 10 cm.)

Landmark 3D Hao et al. [31] introduced dataset called Landmark 3D13 which
contains 45K images of 25 landmarks collected from Flickr web service. Besides
the landmark photos the dataset also contains reconstructed 3D landmark
models. It is suited mainly for landmark recognition.

Cambridge Landmarks dataset Kendall et al. [45] recently published their
dataset for 6-DOF camera relocalization using CNN. Training and testing
images are available online14, as well as SfM models used for the camera pose
training. The dataset contains 12K images with full 6-DOF camera pose.

3.3 Datasets for methods using data of multiple modalities

Dataset for horizon-based localization Two datasets for horizon-based local-
ization were published online15 by Saurer et al. [74]. The two datasets contain
over 1000 images with verified GPS position and FOV for every image. For
203 images the horizon segmentation is available.

Cross-view dataset CVUSA dataset was introduced by Workman et al. [92]
comprising 1.5 million geo-tagged image matched pairs of ground level and
aerial ortho photo map. It was created from Flickr photos and Google Street
View. The dataset can be obtained directly from authors16, but it is not avail-
able online.

11 http://www.cs.cornell.edu/projects/bigsfm/#data
12 http://vision.soic.indiana.edu/projects/disco/
13 https://landmark3d.codeplex.com/
14 http://mi.eng.cam.ac.uk/projects/relocalisation/#results
15 http://cvg.ethz.ch/research/mountain-localization/
16 http://cs.uky.edu/~scott/research/deeplyfound/

http://www.cs.cornell.edu/projects/bigsfm/#data
http://vision.soic.indiana.edu/projects/disco/
https://landmark3d.codeplex.com/
http://mi.eng.cam.ac.uk/projects/relocalisation/#results
http://cvg.ethz.ch/research/mountain-localization/
http://cs.uky.edu/~scott/research/deeplyfound/
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Raw mapping data of multiple modalities Raw mapping data are available
through USGS17 where various mapping data like topo maps, aerial pho-
tographs, or sattelite images are available. The DEM18 data are also avail-
able [27]. NLCD provides data19 like land cover attribute maps, or tree canopy
maps. Maps containing the change between consecutive published versions of
land cover maps (last two are from years 2006 [25] and 2011[36]) are also
available.

4 Evaluation methods used in visual geo-localization

Several common methods for evaluation of geo-localization systems exist. Usu-
ally authors use similar evaluation methods for related visual geo-localization
topics, so they are able to compare with competitive methods. We review most
common methods found in the surveyed works.

4.1 Top-k candidates / percentage of localized images

Popular evaluation technique used by state-of-the-art geo-localization meth-
ods is the plot of number of the candidates (horizontal axis) against fraction
of query images from evaluation set that were localized within the given num-
ber of candidates [7,56,3,74,92]. In other words, when the method returns
ordered list of candidate locations, we count how many query images were lo-
calized correctly using fixed number of candidates. The image is considered as
localized correctly if at least one candidate out of top-k candidates is located
within defined distance from the ground truth. The curve has ROC-like, non
decreasing shape.

This method clearly shows how much candidates one has to inspect, in
order to find at least given number of correctly localized query photos. In also
illustrates, that precise geo-localization is hard task, since the methods are
often unable to provide good localization accuracy for the top-1 candidate.
However, practical usability of this metric is limited. Usually, the user is inter-
ested in top-1 candidate, since it is not practical to verify several candidates
of possible locations. To address this problem, following evaluation method
can be used.

4.2 Percentage of images / localization error

Another option is to plot the localization error (distance of the location esti-
mation to the ground truth; horizontal axis) against percentage of images that
were localized with the same or lower error. This method was used mainly by

17 http://nationalmap.gov/elevation.html
18 http://nationalmap.gov/elevation.html
19 http://www.mrlc.gov/nlcd11_data.php

http://nationalmap.gov/elevation.html
http://nationalmap.gov/elevation.html
http://www.mrlc.gov/nlcd11_data.php
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global geo-localization methods [33,90], which retrieve the most probable loca-
tion (1 candidate) and measure number of queries that were localized at least
with error of given threshold.

Advantageous on this method is, that we directly know, how accurate is
the method for given fraction of query images from the evaluation set.

4.3 Position, orientation error per video frame

Visual geo-localization methods based on SfM technique [59,55,71,73], and
reviewed SLAM methods [59,29,88,51] usually evaluate their methods per
frame basis. Number of correctly matching query images/frames is usually
presented in a form of a table. Distance to ground truth and camera orientation
error are usually calculated per video frame and plotted; frames on horizontal
axis and the error on vertical axis. Average distance from ground truth is also
often calculated as a measure of accuracy.

Since methods using this evaluation technique are usually verified on ex-
actly the same datasets, it is very easy to compare the method performance
to competitors. Furthermore the methods aim to localize in real-time, the
computation time is also related metric.

4.4 Geolocalization area / region of interrest

Similar measure to top-k candidates (Section 4.1) is the measure of geo-
localization area (GA) over the region of interest (ROI, the total area of the
search space) [87,18]. Candidate positions in the search space have assigned
its area (which is usually uniform for all the candidates). The candidates are
sorted according to the method confidence. For each query the GA is calcu-
lated as a sum of areas preceding the candidate that contains the ground truth,
and divided by ROI. The graph is plotted with respect to changing GA/ROI
measure.

In case of uniform candidate areas, this method is the same as top-k can-
didates. The method would be more informative for non-uniform sampling of
the search space, since it would penalize wrong estimations with large area.

4.5 Precision / recall

Precision/Recall is standard metric used for evaluation of classification and
retrieval methods. In reviewed visual geo-localization it is in fact very sparsely
used method for evaluation. It was used for evaluation of object detection and
place recognition in several methods [3,60].
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5 Influential methods of visual geo-localization in detail

In the Introduction (Section 1.1), we presented the classification of the meth-
ods based on two criteria. Namely, the data type they are using, and the
environment for which they are developed (see Table 1). In the Overview of
the visual geo-localization methods (Section 2), we summarized many exist-
ing approaches with respect to the first criterion (data type). In this section,
we describe selected state-of-the-art visual geo-localization methods in a more
detail and classify them according to the second criterion (environment).

5.1 Global image geo-localization methods

Global image geo-localization becomes possible thanks to growing number of
publicly available photos. Unfortunately, by far not all of the available photos
contain noise free GPS coordinates. Other useful information might be missing
as well; in particular the field-of-view (FOV), which helps to disambiguate the
scale and position of the camera in 3D space, thus reducing the camera pose
estimation complexity. Methods estimating the location without the camera
orientation may therefore be advantageous in case of noisy metadata or their
complete absence. As such methods are independent on metadata, environ-
ment and other assumptions, they can operate at global scale, around the
whole world.

The idea of world-wide single image geo-localization was introduced in
IM2GPS by Hays et al. [33], who use a database of several types of visual fea-
tures for large-scale image retrieval (Section 5.1.1). Difficulties given by non-
uniform distribution of locations of photos in a training set were addressed
later by Lin et al. [56] in Cross-View Image Geolocalization (Section 5.1.2).
They use land cover attribute maps and aerial view maps, which are correlated
with query photo and the database of ground level photos. Jacobs et al. [38]
introduced an idea of geo-localization by comparing the natural scene varia-
tions from static cameras with variations in weather satellite imagery (Section
5.1.3).

5.1.1 IM2GPS: estimating geographic information from a single image

One of the first methods concerned with the visual geo-localization was IM2GPS
by Hays et al. [33]. IM2GPS is a data-driven approach that compares the query
photo with a large database of features extracted from ground-based photos
captured all around the Earth. Feature extraction of the image database takes
approximately 3 days on a large cluster with 400 processors.

The method is suitable for highly populated places, where large number
of photos with a GPS-tagged position is available. The test set consists of
various photos from distinct places (not only highly urbanized areas), which is
extremely challenging. Around 16% of photos from this dataset are successfully
localized within 200 km. The percentage of landmarks in the dataset was 5%,
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and the distance of the 5% of successfully localized photos was not more than a
few kilometers. For famous landmarks, a city from which they originate can be
often found. For 16% of photos, the method succeeds to find the country from
which they originate. 84% of photos were not localized at all. Most problematic
are obviously the photos from locations with small density of photos in the
database (forests, mountains, deserts, etc.).

5.1.2 Cross-view image geolocalization

Cross-View Image Geolocalization method by Lin et al. [56] searches for cor-
respondences between the query photo, ground level photos, aerial view map
(Fig. 2a), and land cover attribute map (Fig 2b). The main observation is that
the attribute map and an aerial view have some geolocation-sensitive infor-
mation in common with the ground level photos. The database is therefore
created from the land cover attribute map (freely available from USGS GAP
Land Cover Data Set20), an aerial map (from Bing maps) and the ground level
photos. The query photos are matched with the ground level photos. If not
enough ground level photos are available, the cross-view localization is used.
This is the biggest improvement over the previous IM2GPS method, which is
not suitable for such isolated images.

The method is evaluated on an area of 1600 km2 around Charleston, SC.
Despite the region is highly diversed and exhibits several different kinds of
scenes (urban, agricultural, forest, marsh, beach, etc.), it is much smaller than
the area tested in IM2GPS [33].

5.1.3 Geolocating static cameras

Another approach to global geo-localization has been studied by Jacobs et
al. [38]. They approach the problem of geolocating static webcameras in out-
door. Such cameras are freely available for observing weather conditions and
other purposes. Neither landmarks, field-of-view overlaps, nor any other prior
information about the environment of the camera is known. Therefore this
work builds on temporal variations in natural environments – day and night,
illumination changes due to changes in cloudiness, or seasons. Several settings
are tested – the camera is localized according to the weather satellite imagery
or imagery obtained from other static cameras with known location. Generat-
ing satellite images from geolocated static cameras has been also studied.

The method is based on estimation, which pixel in the geo-aligned satellite
map corresponds to the query image time series. It is shown, that particular
components contain scene dependent and scene independent coefficients. These
coefficients encode mainly illumination changes due to sun position, day and
night, and weather conditions. The query image time series I ∈ Rp×τ , where
p is the number of pixels and τ is number of temporal frames, is decomposed
using PCA, so that I = UΣV T . Pixels of satellite images are rearranged to

20 http://gapanalysis.usgs.gov/gaplandcover/

http://gapanalysis.usgs.gov/gaplandcover/
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matrix Sp×τ . To estimate the location, k PCA coefficients in matrix V τ×k are
correlated with pixels of satellite time series imagery stored in matrix S. For
location estimation satellite weather imagery maps, as well as sun illumination
maps, or other cameras with known location can be used.

The experiments were done with a database of 538 static outdoor cameras
(with published GPS position) located across the United States. Localiza-
tion using satellite imagery was done on a subset of these cameras located
in Pennsylvania and Maryland. Each region contained approximately 50 cam-
eras. Mean localization error was 44.6 miles (71.77 km), but without the worst
8 outliers it improved to 23.78 miles (38.27 km). The main disadvantage of
this method compared to other global geo-localization methods is that there
is the need for time-series imagery from the camera, i.e., localization of a sin-
gle image is impossible. On the other hand, the localization precision is much
better compared to IM2GPS [33], or Cross-View Image Geolocalization [56].

5.1.4 PlaNet – photo geolocation with convolutional neural networks

Weyand et al. [90] approached visual geo-localization over the whole Earth
by training Convolutional Neural Network model. The problem is defined as
classification problem over geospatial areas – cells of irregular grid. The non-
overlapping cells cover the globe and are adaptively divided according to the
number of training images available in given area. The denser the coverage
with ground-level images, the smaller are the cells. For this partitioning the
authors use Google’s open source S2 geometry library21. Using this library, the
sphere is hierarchically partitioned by projecting its surface on an enclosing
cube. Total number of the cells was 26 263.

The authors use 125 million images with GPS tag from exif; 91 million for
training, and 34 million for validation. The images were acquired from online
photo sharing services. Only minor filtering of non-photographic images, like
graphs or diagrams was applied, the dataset therefore contains a lot of location-
unrelated images, like food, pets, or products. The model was trained for
2.5 months on 200 CPU cores using DistBelief framework [21]. The authors
evaluate their work quantitively and qualitatively, The quantitative study was
2.3 million photos from Flickr, only containing exif GPS tag, and 1-5 textual
tags; therefore a lot of the images does not contain any cue about its location.
The error is calculated from the GPS tag location to the center of the predicted
cell. Authors report that the system was able to localize 3.6% of images with
the error at most 1 km, and 10.1% with the error up to 25 km. In the qualitative
study the results of the neural network were compared to human results using
GeoGuessr website22. The authors showed that the network was consistently
deliver results with lower error than human.

Applying the CNN to the visual geo-localization problem instead of IM2GPS
method has its advantages. First, the network saw much more training images

21 https://code.google.com/p/s2-geometry-library/
22 http://www.geoguessr.com

https://code.google.com/p/s2-geometry-library/
http://www.geoguessr.com
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(a) Aerial map (b) USGS attribute map

http://gapanalysis.usgs.gov/      
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Open Water

Shrubland & Grassland
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(c) Attribute map legend

Fig. 2: Cross-view image geo-localization: Illustration of the map data.

than IM2GPS, which should be advantageous. Second, as IM2GPS uses near-
est neighbor search, size of the model grows with the size of training set; on the
other hand the model of CNN is independent on the training size and in this
case uses only 377 MB. Further advantage is that for the classification frame-
work is natural to express its uncertainty across the classes so it is easy to
build probability distribution of likely locations in case the method is unsure
of exact location.

5.2 City-scale image geo-localization methods

City-scale geo-localization is focused on densely populated areas, e.g. large
cities. These areas, especially the landmarks, are nowadays covered with many
overlapping photos. This allows utilization of approaches like SfM [79], which
has been used in city-scale environment by Argawal et al. [1]. Methods using
SfM model in combination with SLAM techniques can be very accurate, the
error of localization presented by Middelberg et al. [59] is below 1 m (Section
5.2.6). This undisputed advantage is compensated by very high computational
complexity of the SfM point cloud construction. Problems of large-scale local-
ization using large SfM models are further studied by Li et al. [55], who in-
troduced a new method of Prioritized Feature Matching (Section 5.2.4). Even
larger problem of pose estimation in several cities using 3D SfM point clouds
was presented in a follow-up by Li et al. [54] (Section 5.2.5). Another approach
using image retrieval was presented by Schindler et al. [75]. This work studies
vocabulary trees for effective searching in high dimensional data. Proposed al-
gorithms are tested on problem of city-scale localization (Section 5.2.1). Image
retrieval methods for city-scale were studied deeper by Baatz et al. and Chen
et al. [6,17]. They show how to use street-view imagery along with rough 3D
city models for landmark identification (Sections 5.2.2 and 5.2.3). The local-
ization in the city by Ramalingam et al. [68] uses skylines of high buildings
(Section 5.2.7). Skylines turn out to be intuitive and natural choice for local
features. Similar idea of using horizon lines for matching and localization in
the mountainous terrain was used by Baatz et al. [7] (Section 5.3.1).
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5.2.1 City-scale location recognition

One of the first works dealing with city-scale outdoor visual localization was
presented by Schindler et al. [75]. They propose a method based on vocabulary
tree for city-scale location recognition. The main issue here is an efficient search
in large spaces of SIFT descriptors. A method creating static and dynamic
vocabulary trees for efficient searching is presented. To address performance
issues on such a big database, new algorithm called Greedy N-Best Paths
Search improving the basic Best Bin First (BBF) algorithm is presented.

The method is evaluated on a dataset that consists of 30K images automat-
ically captured by a vehicle driving through a city. Each photo has latitude,
longitude, and compass heading information. Localization is considered suc-
cessful when the distance of a top match is within 10 m from the ground truth.
Besides the performance experiments, it is stated that the method localizes
successfully 80% of query images which were taken one year after acquisition
of the training dataset. Proposed method outperforms the k-d tree with BBF
search strategy.

The most important contribution of this work are the experiments with
large vocabulary trees. The novelty is application of image retrieval methods
with vocabulary trees on such a large problem. Moreover, practical advices to
obtain best performance for searching in large vocabularies are given.

5.2.2 Handling urban location recognition as a 2D homothetic problem

Several methods for city-scale location recognition make use of street-view
panoramas [75,6,94,93]. The idea of using street-view panoramas in accord
with 3D models obtained by extruding the floorplans of known buildings is
followed by Baatz et al. [6]. The query image captured by mobile device is
searched in the database of images. Novelty of this approach resides in pre-
processing the database and query images. The images are transformed, so
that the relation between two matching images is homothety, which rapidly
reduces the search space for geometrical verification step.

The street-view panoramas were mapped on rough 3D model of Places-of-
Interest (POI) – extruded floorplans of buildings. From the whole panorama
were extracted smaller rectified images with little field-of-view overlaps to
sparsely cover the whole POI. DoG keypoints and SIFT descriptors with k-
means clustering were used for vocabulary tree creation. Rectification of query
image was done by finding vanishing points from strongest line segments. For
each vanishing point the rectified image was calculated by removing the per-
spective. On rectified image the upright SIFT features were calculated to query
the vocabulary tree. Best 50 candidates were tested with geometrical verifi-
cation step. Since the matching correspondence between two rectified images
is simple homothety, a simple voting principle was proposed to find the scale
and translation of the query image. The candidate list was reranked according
to the results of the voting stage.
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Several setups for image matching were tested on three datasets. The exper-
iments demonstrated, that usage of upright SIFT features improves the recog-
nition. There were big differences in reported performance on each dataset.
The easiest dataset consisted of training and testing images taken under the
same time and conditions. On this dataset, 85% of top-ranked candidates were
correct. On more challenging datasets, with test photos taken under different
conditions than training images, there were around 35% of correct top-ranked
candidates.

5.2.3 City-scale landmark identification on mobile devices

Landmark identification is related to localization – when a landmark is identi-
fied, the search space reduces rapidly to the area in the neighborhood of that
landmark. Chen et al. [17] studied the landmark identification problem by fus-
ing ideas of Schindler et al. [75], and Baatz et al. [7]. The main contribution of
this work is a publicly available dataset23 of street view imagery captured by
moving vehicle around San Francisco. The landmark identification on mobile
devices has been tested on this dataset as a first benchmark.

3D city model captured by LIDAR sensors and street view imagery taken
by moving vehicle are stored in a database. The images of the streets are taken
as panoramas recalculated to perspective images. Position of buildings in the
street view panorama is calculated based on the 3D model. With this known
position the image is segmented and cropped to contain building centers only.
This new image is called Perspective Central Image (PCI). For each PCI a
Perspective Frontal Image (PFI) without perspective distortion is calculated.
Next, the PCI and PFI images are treated in two parallel branches. For both
branches vocabulary trees on SIFT descriptors of Upright Feature Keypoints
are trained. According to the GPS readings distant images are excluded. A
query image is matched against PCI’s and PFI’s independently, for each branch
different matching scheme is used. Matching results from these two branches
are merged to obtain final result, which by is far more precise than separate
PCI or PFI matching result.

According to the experimental results, the combination of PCI and PFI
matching improves the final result around 10%, with 65% of correctly matched
candidates. Despite good matching precision, which is advantageous in this
approach, complicated and tedious data collection remains the main problem.
This fact is addressed in the following localization methods that often use
publicly available photos.

5.2.4 Location recognition using prioritized feature matching

Li et al. [55] create a 3D model using SfM from a large set of photos down-
loaded from the Internet (see Figure 3a). For that purpose, a standard feature
matching with SIFT descriptors is used. As the highest density of photos is

23 http://purl.stanford.edu/vn158kj2087

http://purl.stanford.edu/vn158kj2087
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(a) 3D SfM point cloud with poses24 (b) SLAM using 3D SfM model25

Fig. 3: Illustration of SfM and SLAM methods.

near famous landmarks, this paper brings some basic ideas about compressing
(pruning) the image database to contain more even distributed photos. It is
shown that the compression brings speedups in the localization phase without
loss of precision. The localization compared to other methods is fairly precise
– mean of the error is 18.3 m and the median is 9.3 m.

An efficient search of the feature correspondences is the key problem. To
address it, two search strategies were developed. SIFT descriptors in the image
are denoted “features” and SIFT descriptors in the model are called “points”.
Two search strategies are presented – “Feature to Point” (F2P) and conversely
“Point to Feature” (P2F). In F2P strategy, query features are searched in the
model. This is a standard, but inefficient approach. More powerful P2F strat-
egy takes model features and compares them against query image features. To
avoid comparing all points to each feature, a smart prioritization is introduced
– the points are treated with priority. It is shown that usually a small number
of features needs to be searched to find a feasible match. Further contribution
is the clever selection of the right features to be evaluated first, which lowers
number of feature comparisons needed to find the correct match.

According to the presented results the true advantage is the speed – the
result of the localization is obtained by a single-threaded process within 4
seconds. However the method is also precise, the localization error is 18.3 m on
the test dataset, but exceptions with error of 400 m exist. The disadvantage is
the need of SfM model, which requires lots of images for construction, making
this method efficient only in largely populated areas.

5.2.5 Worldwide pose estimation using 3D point clouds

In the follow-up work by Li et al. [54], the authors study image geo-localization
in the worldwide scale with a fine pose estimation. As in their previous work
[55], the SfM model of 3D points of various places and landmarks is built.
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Query photos are localized by matching to the visual descriptors stored in
the 3D model. Each 3D point contains a pointer to all SIFT descriptors, from
which the point has been constructed.

The algorithm consists of two main stages. In the first stage, some matches
are found by forward matching. This basic set of matches is augmented in the
second stage with an inverse matching (image features from the model near
the points found during forward matching are searched in the query image).
This yields a broader set of correspondences which are examined to find the
camera pose. Final matches are obtained by new technique called “Sampling
with Co-occurrence Prior” which is, unlike RANSAC, designed to cope with
many outlier candidates. The idea is that the set M of matching points is
divided into smaller sets of points that appear together. The probability of
selecting such a subset for RANSAC round is measured by magnitude of the
intersection of images where the points are present. Intersections of K-image
subset are calculated in advance, so the probability of selecting each point
is quickly available at runtime. Subsets with high probability are inspected
with RANSAC with 3-point or 4-point algorithm for camera pose estimation.
Finally, the bundle adjustment is used to fine tune the final pose.

This method succeeds to register 73% of the images from the challenging
Quad dataset [20] within a few seconds. The mean localization error on Quad
dataset is 5.5 m, median is 1.6 m. 90% of the query images were localized
with location error smaller than 10 m. Most of the errors are caused by wrong
matching of very similar parts of the image like logos or flags.

5.2.6 Scalable 6-DOF localization on mobile devices

Recently proposed method by Middelberg et al. [59] is concerned with the
localization and camera pose estimation on mobile devices. Due to memory
and performance constraints of the mobile platform, the solution is decoupled
to the device and the server parts. The mobile device computes local pose
estimation, the server backend calculates city-scale localization and global pose
estimation. Finally, the results are merged to obtain precise localization and
pose (on Figure 3b).

More specifically, the method makes use of local and global 3D model. The
local one is created on the fly on the mobile device – several keyframes are
needed to create the model using SLAM technique. The global model is created
by standard SfM technique on the server. For a good accuracy, the technique
for merging global and local models is crucial and therefore two methods of
merging are introduced.

The proposed methods are accurate both in localization and camera ori-
entation estimation. Localization error is usually smaller than one meter. Fur-
thermore, the camera orientation estimation error is up to several degrees. The
system is highly responsive; the query frame is processed in approximately
50 ms.

6 Image credit: Li et al. [55]
7 Image credit: Middelberg et al. [59]
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5.2.7 SKYLINE2GPS: localization in urban canyons using omni-skylines

SKYLINE2GPS by Ramalingam [68] is an innovative approach to image lo-
calization in big cities. It attempts to localize the image using the shape of
urban canyons (i.e., narrow streets with tall buildings) when looking upwards.

A query photo of the urban canyon from the street level while looking
upwards is captured and segmented to obtain a skyline. Candidate skylines are
rendered on a skydome and matched to the query skylines with the following
two methods. The first method is based on the segmentation of the sky using
a minimal cut in a graph. The input labeling for minimal cuts was trained for
automatic estimation. After the skyline is obtained, chamfer distance from the
synthesized skylines is calculated. The second approach is based on a shortest
paths algorithm. The max-min operator for every pixel is applied – big value
is assigned to edges far from other edges. The shortest paths algorithm is used
to obtain final matching cost, which is minimized over matching candidates.

This method achieves good localization results. The mean error in the
author’s experiments is 2.8 m while the GPS is 29 m due to tall buildings and
therefore reduced reception of the GPS receiver. However, experiments were
done on relatively small area (part of Boston, New York and Tokio), 6 km
in total. The segmentation using minimum cuts did not perform well – in
Tokio there were problems with trees, in New York the system was not able
to find correct matching for night photos. Similar idea of using horizon line
for geo-localization in the mountains was also used by several other authors
[83,84,81,64,63,30,87,18] (Section 2.2.1). Matching using the skylines feels
natural and intuitive, but it has limitations. One of the biggest problems is
that the matching performance is directly dependent on the quality of the
skyline recognition. Occluded, or wrongly recognized skyline often leads to a
failure of the matching system.

5.2.8 Accurate image localization based on Google Maps Street View

Zamir and Shah [94] published method based on nearest neighbor tree search
with custom pruning and smoothing steps for better accuracy and to lower
storage complexity. The method is trained by computing SIFT descriptors for
detected interesting points by SIFT detector. The descriptors are then stored
with their corresponding GPS tags in a tree using FLANN library [62]. For
a query image, nearest neighbors are found. The matches are then pruned
by step function which uses the nearest neighbor ratio test for each nearest
neighbor that is farther than a constant. After the pruning stage, the nearest
neighbors vote for location in the search space. The votes are further smoothed
by gaussian function to prevent votes scattering. The voting function is nor-
malized and considered as a probability distribution function. The authors
propose to use the Kurtosis of this distribution as the measure of the con-
fidence of localization. The authors also proposed method for localization of
group of photos for better robustness.
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Google Street View dataset consisting of 100K images was used in this
work. The test set consisted of 521 GPS-tagged images. For evaluation pur-
poses the whole dataset was divided into 5 trees. The results illustrated im-
provement over method by Schindler et al. [75] by large margin of almost 50%;
the single image geo-localization method was able to localize almost 80% of
images within the 250 m error, while the method by Schindler et al. [75] was
able to localize only 40% of images within the same error. Group image local-
ization method showed even better results with growing number of photos in
the group up to 5 images.

5.2.9 Image geo-localization based on multiple nearest neighbor feature
matching using generalized graphs

In a follow-up Zamir and Shah [93] further improved their previous method [94]
for visual geo-localization in urban areas. The pipeline of the geo-localization
system is similar to the previous one [94], but instead of smoothing step they
use a multiple nearest neighbor feature matching based on Generalized Min-
imum Clique Graphs. Local features are extracted from the training set and
organized into a tree for nearest neighbor search. The global features compris-
ing of color histograms and GPS position are extracted as well; they are used
in a cost function of the following problem.

The method is formulated as an optimization task over graphG = (V, E, ω,w),
where V is set of nodes (database features), E is set of edges, ω defines node
costs an w defines edge weights. Nodes are clustered so that each cluster con-
tains k -nearest neighbors for each query feature. Nearest neighbor for each
query feature is represented by a subgraph of G, with one node selected from
each cluster. Such a subgraph is a complete graph. The cost function is defined
so that it takes into account local feature similarity, as well as global feature
similarity between the database images. As the problem is NP -hard [22], the
authors proposed to use approximate solver based on Local-neighbourhood
Search.

The results illustrated that the proposed method is much more accurate
in terms of localization error compared to the prevous works [75,94]. The
method was able to localize around 10% more images within the 250 m error
compared to Schindler et al. [75]. The authors also published their dataset of
102K Google Street View images (see Section 3).

5.2.10 GPS-tag refinement using random walks with and adaptive damping
factor

Zamir et al. [95] further worked on the problem of automatic robust localization
with a database contaminated by unknown number of noisy GPS tags. From
a viable matches, triplets of two matching database images and the query
image are formed. The method utilizes SfM technique to provide camera pose
estimation for large number of triplets. To filter out noisy triplets, Random
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Walks on the estimations are used. This provides subset of reliable triplets,
from which the result location is inferred.

Again, the optimization problem is defined as a complete graphG = (N, E),
where N corresponds to location estimations, and E represents edges. The
probability of transition from one node to another is modeled according to their
GPS distance. Initial score for random walks is modeled so that it penalizes
images from spots with high density of images in the database, so the method
does not necessarily converge to the densest place. To cope with noisy location
estimations, the authors proposed to use adaptive damping factor instead of
a constant damping factor. After the algorithm converges, the final location
is calculated as a mean of estimated positions weighted with scores calculated
by random walks.

The method was evaluated on a dataset of 18K GPS-tagged images. The
authors manually verified the accuracy of the 8K GPS tags and showed, that
there is from 10% to 30% of inaccurate tags (error greater than 30 m). For
evaluation 500 of images from the dataset was manually annotated.

5.3 Geo-localization in natural environments

Recently, geo-localization in natural environments has gained attention, in
particular in mountainous terrains and deserts. All the following methods use
a digital elevation map (DEM) or 3D model of a terrain for cross domain
matching. Baatz et al. [7] use horizon lines to find the position and rough
estimation of camera orientation (Section 5.3.1). Geo-localization of untagged
desert imagery was studied by Tzeng et al. [87], who proposed novel skyline-
based feature based on concavities (Section 5.3.2). A method for estimating the
orientation of the camera with a known position was proposed by Baboud et
al. [9] (Section 5.3.3). Pose estimation on mobile devices has been approached
by Porzi et al. [65] (Section 5.3.4).

5.3.1 Large scale visual geo-localization of images in mountainous terrain

Baatz et al. [7] use horizon lines (see Fig. 4a) to construct local features (con-
tourlets), which are stored in a large database and utilized by a Bag-Of-Words-
like approach for matching. The search space is represented by publicly avail-
able DEM of Switzerland, which has an area of 40 000 km2. Visualization of
such a DEM map is shown on Figure 4b.

The elevation map is sampled with the resolution of 111 m in N-S direction
and 115 m in E-W direction. In each sample point, the horizon line is ren-
dered in a form of a cubemap. From each cubemap, contourlet descriptors are
extracted and stored in the database of visual words. Several metrics for fast
comparison of query and database contourlets were introduced. Voting for best
candidates from the database is performed. Top candidates are geometrically
verified using iterative closest points algorithm (ICP), which aims to register
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(a) Example of horizon line (red). (b) Synthetic DEM

Fig. 4: Example of query image and corresponding DEM visualization.

the query horizon line to a database horizon line. Result list is created from
candidates sorted according to the error reported by ICP.

The main contribution is the efficient encoding of horizon lines to con-
tourlet descriptors. Since each contourlet is encoded using only one integer, all
the necessary comparisons can be performed efficiently. Further, the proposed
design of voting for candidates reflects approximate orientation of each con-
tourlet. Therefore, this method can find approximate direction of the camera.

Experiments suggest, that for 88% of images in the test dataset the top
candidate was within 1 km radius from the ground truth position, which is
good result. Interesting on this work is the fact, that horizon line feature is
often sufficient to obtain viable localization. However, there is the possibility to
extend this approach by secondary horizons, depth information, sun position,
surface normals, natural landmarks as rivers, lakes, glaciers or forests, and
other information. Using only single horizon line faces the same problems
that were discussed earlier with the SKYLINE2GPS [68]. In the context of
mountains, the risk of wrong horizon line detection is even bigger. Distant
hazy horizons with ill-defined boundaries or partially occluded horizon by
clouds or trees are the most frequent reasons.

5.3.2 User-driven geolocation of untagged desert imagery using digital
elevation models

A user-aided geo-localization approach was presented by Tzeng et al. [87]. Sim-
ilarly to the method by Baatz et al. [7], the authors utilize horizon lines (here
called skylines). The user needs to sketch the skyline, which is automatically
improved by the system. The novelty resides in the features extracted from
the skylines: instead of contourlet features, the authors propose new concavity-
based features. The features are normalized to gain scale and in-plane rotation
invariance.

The query skylines are matched against skyline database generated from
a DEM. The DEM is evenly sampled in the same way as in Baatz et al. [7] –
in a form of a 2D grid with resolution of 1000 m along both north-south and
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(a) Query image (b) Detected edges (c) Synthetic edges

Fig. 5: Example of query image and corresponding silhouette maps.

east-west directions. In each sample point on the grid, the DEM is rendered
to full 360° panorama, from which the skyline is extracted. The actual match-
ing of query features to the database consists of two steps. In the first step
only the feature endpoints are matched to prune the search space. During the
second step more exhaustive search on the pruned search space is done. Final
candidates are aligned and sorted according to the alignment error.

As the mentioned methods [7,87] use different datasets for testing and
different metrics for measuring the geo-localization quality, it is difficult to
compare them in terms of the precision. According to the results, to obtain 50%
of correctly localized images, there is the need to visit 10% of the search space.
As the DEM is sampled sparsely (each 1000 m0), correct location can exhibit
the error up to 1 km. As a future work, the authors propose to use secondary
horizon skylines, because they contain abundance of distinctive information.

5.3.3 Automatic photo-to-terrain alignment for the annotation of mountain
pictures

Baboud et al. [9] proposed a camera orientation estimation algorithm for
mountain environments. The problem is defined as 3 degrees-of-freedom es-
timation – yaw, pitch, and roll angles are subject to estimation. The authors
are assuming the GPS position and FOV (or focal length along with the size
of the camera sensor) are known. The algorithm utilizes the publicly available
DEM rendered to synthetic panorama (portion of such a panorama can be seen
on Figure 4b). From the synthetic panorama the edges are extracted (using
a depth of the scene). An edge map extracted from the query image (Figure
5a, b) is matched against the synthetic silhouette map (Figure 5c).

For most precise results the authors propose a robust silhouette map match-
ing metric. Parallel overlapping edges contribute with positive value, while the
crossing edges cause negative contribution to the matching score. Match with
the highest score is considered the best. As the computation of this metric
throughout the whole search space of three parameters would be too costly,
custom vector-field cross-correlation (VCC) has been introduced to rapidly
prune the search space. The cross correlation also favors the edges with the
same direction while edges crossings are penalized. Since the VCC can be cal-
culated in a fourier domain, it allows for fast approximation. The matching
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metric is finally evaluated on search space encapsulating the best candidates
obtained by VCC.

According to the authors, the pure matching algorithm – VCC with the
matching metric without the edge detection runs approximately one minute
on computer with two six-core Intel Xeon processors, one GeForce GTX 480
GPU, and 23 GB RAM. The technique was able to successfully align 86% of
query photos (28 photos from Flickr have been tested in total). The correctly
aligned photos exhibit very small orientation error below 0.2°. While the results
are very promising, problems can arise due to occlusion by clouds or trees, or
incorrect EXIF data, as this method is very sensitive to wrong FOV. The
authors report, that the method is robust to small GPS position deviations,
up to few hundreds meters.

5.3.4 Learning contours for automatic annotations of mountains pictures on
a smartphone

Porzi et al. [65] propose a fast method of automatic photo-to-terrain align-
ment for precise Augmented Reality (AR) on a mobile device. The photo to
terrain alignment was also studied in [9], but is unsuitable for usage in mobile
environment since it is computationally demanding.

The query photo along with the GPS and rotation information from gyro-
scope and accelerometer sensors is captured using a mobile device. The mobile
device extracts contours from the image, while the server renders the panorama
silhouettes from DEM at given GPS coordinates. Query image contours are
registered to the rendered edge map acquired from the server. Having precise
camera pose, the query image is augmented with a meta-data of the captured
environment. The contour detection is approached as a classification problem –
edges corresponding to edges on the mountain terrain shall be finally reported.
Due to the resource constraints of the mobile platform, simple Random Ferns
classifier is used, despite the Random Forrest classifier performed better in the
evaluation.

Using only the information from on board sensors and the Canny edge
detector, the performance is almost real time. However, the registration error
is above 5°making it unsuitable for AR applications. With the use of Random
Ferns classifier, the registration error is around 1.3° with computational time
of a few seconds (tested on Sony XPERIA Z).

5.3.5 Camera geolocation from mountain images

Chen et al. [18] extend the idea of visual geo-localization via horizon matching
by using secondary ridge lines. They use semi-automatic approach to detect
query ridge lines – the user selects the most important areas of the ridges and
the system completes the line around using detected edges.

The authors incorporate similar voting process utilizing BOW-like ap-
proach on contourlett features [74]. The voting stage of the algorithm is ex-
tended for voting in both horizontal and vertical directions. This introduces
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problem with dimensionality of the voting array, which grew from 3D to 4D.
After the accumulation stage only bin containing highest vote in vertical di-
rection is kept. The authors also sample the FOV (0° to 70°) and the roll
angle (-6° to 6°).

The method was tested on five 10 000km2 regions in the North and South
America, and Asia. Digital elevation models were used from USGS NED [27].
Authors evaluate their results using fraction of query images within given Geo-
localization Area (GA) (sum of all candidate areas that scored higher than are
containing ground truth), and Total Area (TA) (sum of all candidate areas).
The authors compare their approach to the aproach using horizon line only
and show that using multiple ridge lines is beneficial; over 80% of tested images
lay within area of 10 km2, which means that maximal error for more than 80%
of images 14 km at maximum. Method using only horizon lines localized 50%
of images with the same error.

6 Applications

A number of works in this survey suggest many interesting applications. We
give a review of applications mentioned in the surveyed articles. Visual geo-
localization is in fact an application itself; from query image or video we obtain
a geographic location where the material has been captured.

In online applications people can try their visual geo-localization abilities.
GeoGuessr26 site uses Google Street View panoramas as a query images, and
people are supposed to make guess, where the panorama has been captured.
View From Your Window Contest27 is a similar website, where challenging
sets of images are prepared to be geo-localized by people. Weyand et al. [90]
has recently published evaluation of their geo-localization system, which was
able to systematically beat geo-localization estimations made by people.

With the knowledge of camera pose of given image, systems for organiza-
tion and visualization can be created, like Photo Tourism [79]. With such an
application, people can visit locations they have never been to and inspect the
photos in their original pose at the time they were captured.

Various methods for digital photo enhancement were presented in Deep
Photo [47]. The knowledge of location and orientation is crucial for methods
like model-based haze removal. Also another tricks can be attained – illumina-
tion in the original image can be altered with the synthetic one, and the image
can be augmented by labels or artificial segments like paths or motorways.

Kendall et al. [45] recently published nice demo of their relocalization
framework28. This online application can estimate the precise pose of the query
image in the trained area. With such an application, people can localize them-
selves using their smartphone even without GPS.

26 https://www.geoguessr.com/
27 http://dish.andrewsullivan.com/vfyw-contest/
28 http://mi.eng.cam.ac.uk/projects/relocalisation/#results

https://www.geoguessr.com/
http://dish.andrewsullivan.com/vfyw-contest/
http://mi.eng.cam.ac.uk/projects/relocalisation/#results
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Autonomous vehicles, like Junior [61] or UAV’s are indeed another appli-
cation of visual geo-localization. Such devices use several inputs, like LIDAR,
GPS, video, and more to preserve robustness of location recognition. The ve-
hicles actually need to solve many problems that are aimed by state-of-the-art
in computer vision, like pedestrian and traffic sign detection, self-localization,
localization of other cars in traffic, reference speed measuring, and more.

Google Goggles29 is a mobile application from Google. It is able to recognize
objects, and identify landmarks as pointed out by Chen et al. [17].

7 The future of visual geo-localization

The ultimate goal of the visual geo-localization is to precisely estimate the
position or even orientation of the camera, given a query image or a series of
images. In order to analyze and discuss possible future research directions, let
us summarize what actually is considered to be a well-studied problem, and
which problems are still open research challenges.

7.1 Well-studied problems

We consider problems which were addressed by a number of researchers as
well-studied problems. However, there is still a chance that algorithms for these
problems can be improved slightly. Expected improvements in this field are
rather technical: more training data, and a faster training of machine learning
techniques due to faster hardware, etc.

Generally, image-based visual geo-localization methods in urbanized areas
are well-studied these days. The two major branches of image-based algorithms
for geo-localization or place recognition are based on: (I) image retrieval [75,94,
17,95,93,2]; and (II) Structure-from-Motion (SfM) [37,55,71,54,72,73,82,70,
45,96]. The recent image retrieval-based paper, utilizing a VLAD layer inside a
convolutional neural network (NetVLAD [2]), sets a promising state-of-the-art
result with almost 90% of correctly found top-1 candidates. The core finding
is that the CNN is able to learn the invariance to scene appearance changes
such as night vs. day, winter vs. summer, with the use of Google Time Machine
feature of a street view. Location estimated using this method is dependent on
the precision of locations in Google Street View, which is around 30 m. An even
more accurate position estimation, up to units of meters, can be achieved by
SfM methods. Such methods need a large sparse 3D point cloud constructed
from many images. This is quite a strict shortcoming of the method – the
sufficient model is not available for the entire cities, usually just for city parts,
and building such models is highly demanding on computational resources and
time. Ideally, both approaches might be exploited at the same time, so as to
estimate rough position, and refine it using an SfM camera pose estimation
when a sufficient model is available. Visual SLAM is a well-studied topic as

29 http://www.google.com/mobile/goggles

http://www.google.com/mobile/goggles
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well [29,19,88,50,51], which is now able to localize a mobile device almost in
real time [59].

7.2 Open problems

Open problems are less studied and usually more complicated than the well-
studied problems, and so a major improvement in current research in this
area may be expected in the future. The global localization [33,90] is still an
open problem. Recent work by Weyand et al. [90] utilized a massive CNN
training on a dataset of hundred million images to predict likely localization
using classification. While the experiments suggest that the method slightly
outperforms humans in the task of visual geo-localization, only around 10%
of query top-1 candidates were localized with the distance below 25 km, and
around 15% were localized with the distance below 200 km from the ground
truth. However, with respect to the overall complexity of the whole task, these
results are promising. Despite the fact that machine learning-based cross-view
approaches [56,57] for matching different modalities exist, the possibility of
utilizing multimodal data on the scale of the whole world has not been explored
yet. Multimodal data for such a large scale might include orthophoto maps,
satellite imagery, weather, digital elevation models, or attribute maps.

Rapid scene appearance changes and self-similar, repeating patterns are
still the largest obstacles for place recognition in the natural environment.
Geo-localization in this domain was addressed mainly by retrieval using hori-
zon lines and edge features [30,87,18,74]. However, not only edge and horizon
line features are descriptive in the natural environment. Semantic segmen-
tation, an estimated depth of scene, normals, or sun position [49] might be
used as well. Geo-localization based on semantic segmentation has already
been studied by several authors [3,76,16], but in urban areas only. Specifically
for natural environments, semantic segmentation identifying forests, bodies of
water, glaciers or rocks can significantly help to prune the search space in
mountainous areas. However, this direction of research has been explored only
slightly by Baatz et al. [8]. They developed a method for camera orientation
estimation with a known location, based on an alignment of semantic segments
detected in the query image and semantic segments rendered from a digital
model.

While approaches for place recognition in urbanized areas, such as the
NetVLAD [2], do not rely on the field-of-view of a camera at all, systems
developed for localization in mountains often depend on it. Both Saurer et
al. [74], and Chen et al. [18] need to sample the field-of-view for each round
of the matching process, which is costly. Tzeng et al. [87], on the other hand,
built the field-of-view estimation into the matching process of horizon line
descriptors. Camera orientation estimation methods, such as the method by
Baboud et al. [9], need to know the camera field-of-view as well. In future
work, the need for the explicit field-of-view shall be eliminated.
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An approach to geo-localize static cameras [38] based on weather patterns
from satellite maps has been proposed. However, we are not aware of any work
using a similar principle for a single image. Since weather is time and location
dependent, we believe that such an approach could be adopted for single im-
ages as well. Furthermore, additional information, like the sun’s position might
be estimated from a single image and used with this approach. However, more
prior information about the ground-level photos would be needed, such as the
time when the image was taken.

8 Conclusion

Visual geo-localization is a new research topic which has recently been studied
extensively. Initially, the idea of large-scale visual geo-localization has been
explored by global localization methods. These methods take advantage of
machine learning techniques combined with large image databases. Although
large number of images is available worldwide, reliable global geo-localization
(across whole world) it is still not enough accurate for practical use.

During the past few years, most of the research has been focused on city-
scale localization. City-scale localization is often based on classical image re-
trieval methods which are applied in large-scale city environment. This became
possible due to abundance of freely available images, which allows researchers
to create extensive 3D point clouds with corresponding databases of images.
Search in the large databases became (and remains) the key problem in this
direction of visual geo-localization research.

Visual geo-localization in natural environments is far less explored category
than city-scale. However, the research activity in this field is rising. Outdoor
localization is considered challenging due to the nature of the problem. First,
natural environments are way larger than urban areas. Second, since the den-
sity of people in natural environments is minimal compared to the residential
areas in cities, fewer images of natural landmarks are available. On the other
hand, various kinds of data may be used – land cover attribute maps, aerial
maps and DEM’s are the primary source of information. Since not much is
known about correspondence between real world photos and these abstract
data sources so far, a lot of future research resides in this field. Self-similarity
and fractal nature of the outdoor scenes are another cues which may be utilized
by future localization methods.
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