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Abstract

Numerous computer graphics methods make use of either explic-
itly computed strength of image edges, or an implicit edge strength
definition that is integrated into their algorithms. In both cases, the
end result is highly affected by the computation of edge strength.
We address several shortcomings of the widely used gradient mag-
nitude based edge strength model through the computation of a hy-
pothetical human visual system (HVS) response at edge locations.
Contrary to gradient magnitude, the resulting “visual significance”
values account for various HVS mechanisms such as luminance
adaptation and visual masking, and are scaled in perceptually lin-
ear units that are uniform across images. The visual significance
computation is implemented in a fast multi–scale second genera-
tion wavelet framework, which we use to demonstrate the differ-
ences in image retargeting, HDR image stitching and tone mapping
applications with respect to gradient magnitude model. Our results
suggest that simple perceptual models provide qualitative improve-
ments on applications utilizing edge strength at the cost of a modest
computational burden.

CR Categories: I.3.3 [Computer Graphics]: Picture/Image
Generation—Line and curve generation; I.4.6 [Segmentation]:
Edge and Feature Detection; I.4.2 [Enhancement]: Filtering

Keywords: edge strength, visual perception, HDR

1 Introduction

Localizing significant variations in image luminance and chromi-
nance, i.e. edge detection, has been a classical problem in image
processing. Similarly, edge aware image decompositions have been
used in numerous computer graphics applications such as image ab-
straction, detail enhancement and HDR tone mapping. In both con-
texts, the essential component is an edge model, which in the former
case is used to produce a map of image edges, and in the latter case
is integrated into the image decomposition algorithm that purposely
avoids smoothing near strong edges.

The edge model serves two purposes: determining the location and
strength of edges. The majority of the methods proposed for edge
detection involve smoothing and differentiation to locate edges. A
measure of edge strength is essential, since typically the result of
these methods is “too many” edges, and the output is only compre-
hensible after the removal “less important” edges thorough thresh-
olding. Incidentally, gradient magnitude based edge models are
conveniently used in all but the most specialized edge detectors,
because one can locate edges by computing local maxima of the
gradient magnitude, as well as simply use the magnitude value at
the edge location as a rough estimate of edge strength.

While existing methods are capable of localizing edges in a seman-
tically meaningful way, their performance is directly influenced by
the edge strength model they employ. The focus of this work is the
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computation of edge strength rather than edge localization and se-
mantics. Our central idea is that the magnitude of image edges as
perceived by the human eye, or the “visual significance” of an edge,
should be the guideline for edge strength computation. In that re-
spect, gradient magnitude as an edge strength measure encapsulates
the well known property of the Human Visual System (HVS) being
sensitive to luminance differences, but ignores other aspects such as
visual masking and luminance adaptation. Earlier research [Ferw-
erda et al. 1997] has demonstrated how image contrast is masked by
other contrast patches that are of similar spatial frequencies. Except
perhaps simple stimuli designed for experimental purposes, visual
masking is expected to occur in virtually any complex image and
often to have a strong influence on perception. Disregarding the
non–linear perception of luminance, especially in HDR images, of-
ten leads to overestimations in bright image regions. As a simple
counter–measure, one can operate in log–luminance space [Fattal
et al. 2002] that better approximates perceived intensity in bright
image regions, but fails to model the perception of lower luminance
values that is not linear in log–space.

We present an edge aware image decomposition framework based
on second generation wavelets [Fattal 2009] that uses visual signif-
icance as its edge strength metric. The contribution of this work is
the use of an HVS model to estimate visual significance as a mea-
sure of edge strength, instead of gradient magnitude that is com-
monly used in computer graphics applications. The HVS model
computes physical contrast at edge locations, and scales it through
a cascade of simple and well known models of luminance adapta-
tion, spatial frequency perception and visual masking. The com-
puted visual significance is approximately scaled in perceptually
linear units, which implies that similar edge strength values across
multiple images correspond to similar perceived strengths. In this
paper, we first summarize related work (Section 2), then discuss
the edge awoiding decomposition framework (Sec. 3) and the HVS
model (Section 4), than we validate the model (Sec. 5) and show
that the use of visually significant edges results in qualitatively bet-
ter outcomes in image retargeting, panorama stitching and HDR
tone mapping over gradient magnitude based approaches (Sec. 6).

2 Background

In this section we discuss related work on edge detection, computer
graphics applications that utilize edge models, and HVS models for
contrast perception. Due to the purely 2D nature of our technique,
we do not discuss any line drawing techniques that are capable of
localizing edges in a semantically meaningful way, but require 3D
information about depicted objects.

Edge Detection
Edge Detection has been one of the fundamental problems in com-
puter vision. In an early approach, Marr and Hildreth used the zero
crossings of the Laplacian operator motivated by its rotational sym-
metry [Marr and Hildreth 1980]. Later Canny focused on finding
an optimal differential operator that localizes sharp intensity edges
(which he approximated with the first derivative of a Gaussian),
and introduced the use of non-maxima suppression and hysteresis
thresholding [Canny 1986]. Canny’s method proved to be very re-
liable over the years and is still widely used. A notable improve-
ment over earlier edge detectors is the use of multi-scale analysis
to detect smooth edges as well as sharper edges (see [Pellegrino



et al. 2004] for an overview). The steerable pyramid decomposi-
tion, while designed for general purpose feature detection, is shown
to perform better at small peaks of intensity by combining even and
odd filter responses [Freeman and Adelson 1991]. Lindeberg pro-
posed an automatic scale selection method where the scale of edges
is determined by finding the maximum of a strength measure over
scales [Lindeberg 1996]. This method is later employed in George-
son’s third derivative operator [Georgeson et al. 2007], which pro-
vides a more compact response than the first derivative. Some effort
has also been made to detect color edges [Ruzon and Tomasi 1999].
For a detailed summary of edge detection techniques we refer the
reader to [Ziou and Tabbone 1997].

Applications
Edge detection has found various applications in computer graphics
such as guidance over image editing operations [Elder and Gold-
berg 2001], stylization and abstraction of photographs [DeCarlo
and Santella 2002] and texture flattening [Perez et al. 2003]. The
notion of edge importance understood as its “lifetime” (essentially
its presence) over increasing scales in the scale-space framework
similar to [Lindeberg 1996] has been used for stylized line drawings
and structure-aware image abstraction [Orzan et al. 2007]. Edge-
preserving techniques such as the bilateral filter have been used to
decompose an image into a base and detail layers and applied to
HDR tone mapping [Durand and Dorsey 2002]. Recently, Farb-
man et al. [Farbman et al. 2008] proposed another decomposition
with multiple detail layers and presented applications to scale selec-
tive feature enhancement and image abstraction. Fattal [2009] later
showed that comparable results can be achieved much faster us-
ing a second generation wavelet decomposition with a specialized
weighting function that avoids edges. Another approach to edge
preserving filtering is detecting the edge strength by computing the
gradient of the input image, and reconstructing the image through
anisotropic diffusion [Perona and Malik 1990]. This method de-
couples edge detection and smoothing, but it is inefficient due to
the iterative processing. This method has later been modified by
an edge strength measure based on curvature change [Tumblin and
Turk 1999]. Gradient domain operators such as [Fattal et al. 2002;
Mantiuk et al. 2006], while not explicitly stated, also utilize edges
since gradient magnitude operator is essentially an edge detector.
Mantiuk et al.’s [2006] method has additionally a perceptual com-
ponent in the form of a simple contrast transducer.

Contrast Perception
The HVS characteristics involved in contrast perception are quite
complex and have been investigated in numerous psychophysical
studies. Even in the simple case of detection experiments, where
the task is to distinguish a sine wave grating from the uniform back-
ground, the resulting detection threshold depends on many factors
such as the background (adaptation) luminance, the grating’s spatial
frequency, orientation, spatial extent, and eccentricity with respect
to the fovea. These characteristics are modeled by contrast sensitiv-
ity functions (CSF) [Daly 1993; Barten 1999]. Other characteristics
of contrast perception are observed in the discrimination experi-
ments, whose goal is to determine how the presence of one mask-
ing sine [Legge and Foley 1980] or square [Whittle 1986] grating
affects the discriminability of another test grating. In some experi-
ments, it turned out that the maskers of weak contrast actually facil-
itate the discriminability of test grating, and the corresponding dis-
crimination thresholds are even smaller than the detection threshold
as measured by the CSF. For high contrast (suprathreshold) maskers
an elevation of discrimination thresholds can be observed. This be-
havior is modeled by transducer functions [Legge and Foley 1980;
Wilson 1980; Mantiuk et al. 2006], which convert physical contrast
of an image to a hypothetical HVS response. Various transduc-
ers have been successfully incorporated into the HVS models used
in many computer graphics applications including texture mask-

ing simulation [Ferwerda et al. 1997], image appearance model-
ing [Pattanaik et al. 1998], perception-based rendering [Bolin and
Meyer 1998], and tone mapping and contrast enhancement [Man-
tiuk et al. 2006; Mantiuk et al. 2008]. Often, transducer functions
limit their modeling to intra–channel masking assuming a certain
contrast patch is solely masked by other contrast patches at the same
spatial frequency and orientations. A more comprehensive model
by Watson and Solomon [Watson and Solomon 1997] also com-
prises masking from adjacent frequencies (inter–channel masking),
in effect contrast patches are subject to masking from other contrast
patches within a certain neighborhood. The neighborhood masking
model in JPEG2000 is a simpler implementation of the same prin-
ciple [Zeng et al. 2000].

3 Edge Avoiding Framework

Objects appear differently depending on the scale of observation,
and thus visual significance of image features depends on the im-
age scale. Consequently, many image processing tools including
edge detection algorithms adopted multi–scale approaches. This
has been physiologically justified by the finding that each simple
retinal cell responds to a certain bandwidth of spatial frequencies
[Wandell 1995, Chapter 6].

Recent work [Fattal 2009] demonstrates use of second generation
wavelets computed through the lifting scheme [Sweldens 1997] in
the context of edge avoiding multi–scale image decomposition. In
this section we give an overview of these concepts, for a detailed
discussion refer to [Jansen and Oonincx 2005]. Contrary to regular
wavelets, second generation wavelet bases do not have to be merely
translates and dilates of a single pair of scaling and wavelet func-
tions. This generalization enables data dependent filtering through
the use of a weighting function that utilizes the information ob-
tained from the local neighborhood changes the shape of wavelet
bases accordingly. In the context of edge avoiding wavelets (EAW)
the weighting function assigns lower weights to locations contain-
ing strong edges, thus the wavelet bases effectively “avoid” those
locations.

The data dependent filtering achieved by wavelet bases not rely-
ing on translation and dilation comes at the cost of prohibiting
the use of Fourier analysis for wavelet calculation. This issue has
been addressed by a discrete wavelet transform named the lifting
scheme [Sweldens 1997]. The basic idea behind the lifting scheme
is to split a signal into fine and coarse samples, predict fine samples
from coarse samples and compute the details by subtracting fine
samples from their prediction, and update coarse samples using the
details. Fig. 1 illustrates the computation in 1D (using Uytterho-
even’s coloring scheme [Uytterhoeven et al. 1997]). Advantages of
the lifting scheme are fast, in place computation and easily invert-
ible decomposition.

One can achieve edge aware behavior by simply executing a
weighting function at each location that assigns weights accord-
ing to the edge strength at the local neighborhood. If the goal is to
avoid edges, i.e. obtaining detail components free of strong edges,
this can be achieved by the function ω in Equation 1, where m and
n are intensities at the current location and some neighboring pixel,
respectively:

ω(m, n) =
1

(|ν(m, n)|α + ǫ)
. (1)

The control parameter α is set to 0.8 as suggested in [Fattal 2009].
Divisions by zero are prevented by setting ǫ to 10−5. We will use
the function ν later for the estimation of visual significance; in the
original implementation it simply returns the difference of n and
m. Such a decomposition is useful in contrast editing applications



such as detail enhancement and image abstraction, since halo arti-
facts are prevented due to the absence of strong edges in detail com-
ponents. The opposite goal of extracting solely strong edges can
be achieved by simply using the inverse of ω. The detail compo-
nents of the resulting decomposition closely resemble the outcome
of multi–scale edge detectors, which we utilize in context aware
image retargeting and panorama stitching applications (Section 6).
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Figure 1: Illustration of the lifting scheme on a 1D signal. The
signal is decomposed into fine and coarse parts by designating odd
pixels as fine, and even pixels as coarse components. The fine com-
ponent is predicted from the coarse component using weights com-
puted by the edge aware function ω, or simply by linear interpola-
tion. The difference between the original fine component and the
predicted fine component gives the details. The details are then
used to update the coarse component. The same process is then
iterated on the updated coarse signal.

The straightforward extension to the second dimension is to repeat
the 1D computation at both dimensions (Fig. 2a). If an edge pre-
serving weighting function is used, the results of this 2D decom-
position are analogous to X and Y gradients, and thus fit naturally
into the edge detection pipeline. Another splitting method by [Uyt-
terhoeven et al. 1997] with lower anisotropy produces better results
coupled with an edge avoiding weighting function (Fig. 2b).
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Figure 2: The lifting scheme can be extended by repeating the 1D
computation in X and Y directions (a), or using a lower anisotropy
red-black quincunx lattice (b). Only the prediction step is illus-
trated for brevity.

4 Human Visual System Model

We extend the EAW framework (Section 3) with an HVS model,
where we modify the weighting function (Equation 1) that penal-
izes strong differences of image pixel values by computing visual

significance of the luminance differences. The HVS model takes
physical image luminance as input, therefore 8-bit images should be
mapped to display luminance and HDR images should be calibrated
to scene luminance before processing. The luminance contrast C
is approximated in the EAW framework by dividing the fine sam-
ples by the local mean of the predictions of immediate neighbors
K (2 and 4 for X-Y splitting and red-black splitting, respectively):

C =
Fine

( 1

K
)
∑

K
Predictionk

− 1. (2)

Repeated at each scale, this formulation is similar to the low–pass
contrast in [Mantiuk et al. 2006]. The advantage of a contrast based
edge strength measure over a gradient based measure is illustrated
in Fig.3
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Figure 3: Edge strength predictions utilizing physical contrast ac-
count for the effect of background luminance level. The perceived
strength of step edges 200-201 cd/m2 and 50-51 cd/m2 (left) are
predicted to be the same by the gradient based method, whereas
a contrast based method correctly predicts the weaker perceived
strenght of the first profile.

Note that the contrast C is computed solely using physical lumi-
nance. As the next step we scale C by computing the sensitivity
of the visual system to obtain contrast in perceptually linear units.
Two prominent factors that affect contrast sensitivity are its spa-
tial frequency (ρ), and the adaptation luminance (La). These effects
can easily be observed in the Campbell-Robson chart. We use the
CSF from the Visible Differences Predictor [Daly 1993] with cor-
rections as indicated in [Aydın et al. 2008, Equations (10, 11)] to
obtain the perceptually linearized contrast C′ = C · CSF (ρ, La).
Fig. 4 shows an example where the difference in edge preserving
smoothing is mainly due to the scaling of contrast by the CSF. This
behavior is typical in HDR images, where the contrast magnitudes
at very bright and very dark image regions are overestimated by the
frameworks without perceptual components. As a result, the edges
of the bright window are avoided unlike the edges at the window’s
frame (Fig. 4 center). The CSF’s scaling results in a more uniform
smoothing over edges with similar magnitude of visibility (Fig. 4
right).

Visual masking is the decrease in visibility of a contrast patch in
the presence of other contrast patches of similar spatial frequen-
cies. One way of modeling this effect is by computing a thresh-
old elevation map for each visual channel, which when divided
by the contrast at that channel accounts for the increase in detec-
tion thresholds (thus, decrease in sensitivity). This method trades
off accuracy at supra–threshold contrast levels for better prediction
near the threshold, and has been used in image quality assessment
metrics for distortion detection. On the other hand, the transducer
model is focused on perception of supra–threshold contrasts and
thus preferred in discrimination tasks. The model relies on a trans-
ducer function that is constructed by iteratively summing up con-
trast detection thresholds. The use of a transducer function in com-
puter graphics context is demonstrated in [Ferwerda et al. 1997].
A more comprehensive transducer model [Watson and Solomon
1997] also comprises masking from adjacent frequency channels
(inter–channel masking). In this model, since the lower frequency



Figure 4: The effect of luminance adaptation. The original HDR
image (left), smoothing with EAW method (center), and smooth-
ing with EAW method using visually significant edges (right). The
strength of edges of the bright window are overestimed by EAW
method in the absence of a model of luminance adaptation. All im-
ages are tone mapped [Reinhard et al. 2002] for display purposes.
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Intra-channel neighborhood
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Figure 5: An illustration of neigborhood masking on detail layers
of a multi–scale decomposed image.

channels contain information from the spatial neighborhood, a con-
trast patch at a certain location is effectively masked by neighbor-
ing contrast patches (See Fig. 5 for an illustration of neighborhood
masking.)
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Figure 6: The visual masking due to the random noise modulated
by image luminance in the test stimulus (left), results in lower per-
ceived edge strength then the gradient magnitude (center), as pre-
dicted by our method (right).

While the visual masking due to the local neighborhood is of-
ten not significant for isolated test stimuli, natural images tend to
have “busy”, textured regions where the visibility of edges are no-
tably lesser than non–textured regions. To account for that, our ν
function (Equation 1) comprises the point–wise extended masking
model [Zeng et al. 2000] which, in addition to a compressive non–
linearity, also accounts for visual masking from the local neighbor-
hood K:

R =
sign(C′)|C′|0.5

(1 +
∑

K
|C′

k|
0.2)

. (3)

The effect of visual masking on a simple stimulus is illustrated in
Fig. 6. Figure 7 shows that the involvement of the point–wise ex-
tended masking model results in a perceptually uniform smoothing
near high–masking regions. Computation of the hypothetical HVS
response R is the final step in function ν in EAW the framework.

Figure 7: The effect of contrast masking in a complex image.
The original image (left), smoothing with EAW method (center),
and smoothing with EAW method using visually significant edges
(right). The masking model reduces the strength of the facial hair
edges due to the presence of hair in the local neighborhood.

5 Model Calibration – Perceptual Experiment

To validate and calibrate the proposed edge perception model, we
conducted a simple threshold-level perceptual experiment. The mo-
tivation for this is twofold: first, we aim to calibrate the imple-
mented supra-threshold transducer model described above (Equa-
tion 3) for threshold stimuli; second, as noted by [Whittle 1986],
discrimination thresholds for spatially separated patches should not
be generalized for perceiving edges, thus there is a lack of usable
experimental data. Furthermore, the used CSF curves [Daly 1993]
reflect measurements using the Michelson’s definition of contrast,
which is slightly different from the implemented definition contrast
(Equation 2).

In our experiment, two adjacent grayscale patches were presented
on a calibrated display device. The luminance of the left patch
is kept constant during each trial, whereas the luminance of the
right patch was modulated according to the responses of the sub-
ject. Each subject was asked whether there is a visible edge be-
tween the two patches or not. The luminance of the right patch
was decreased if the response was positive, and increased if the
response was negative. The step sizes were determined by follow-
ing the PEST procedure [Taylor and Creelman 1967]. A random
noise pattern was presented for 1s between stimuli to avoid after-
images, memory effects, etc. Each trial ended once the standard
deviation of the subject’s last 6 responses were below the minimum
step size (0.01cd/m2) or if there were more than 30 responses col-
lected. The experiment comprised 10 trials for each subject, where
the initial luminance of the left patch at each trial is selected by
randomized sampling from the luminance range 1.5 − 400cd/m2.
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Figure 8: Perceptual experiment. Left: measured edge detection
luminance thresholds as a function of adaptation luminance La,
right: model predictions before (red crosses) and after the calibra-
tion (green crosses). An ideal model response is constatntly 1 JND
for the threshold data (dashed line).

The stimuli were displayed on a calibrated Barco Coronis MDCC



3120 DL, a 10-bit 21-inch hi-precision LCD display, in its native
resolution 2048×1536 pixels, the maximal display luminance was
440cd/m2. The display response was measured by the Minolta
LS-100 luminance meter. The experimentation room was darkened
(measured light level: 1 lux), and observers sat approximately 70
cm from the display. The total of 22 observers took part in our ex-
periment. The observers were both male and female and all of them
reported to have normal, or corrected-to-normal vision. Each sub-
ject was verbally introduced to the problem before the experiment.

The measured edge perception thresholds, see Fig. 8 (left), were ap-
proximated by the second order polynomial function (blue curve).
Using the polynomial function, we generated 100 input threshold
stimuli as the inputs for model calibration procedure. We assume
that the model output for each stimulus at the threshold level should
be R=1 JND. Therefore, we run the model for each of 100 input
stimuli to obtain the error function, see Fig. 8 (right). The threshold
prediction of the uncalibrated model (red crosses) was quite solid,
so that we decided to perform the calibration by means of a sim-
ple linear function which should not affect the performance of the
model for supra-threshold stimuli. The calibration was achieved by
dividing the masking model by the calibration fuction (blue curve
in Fig. 8 (right)):

R′ =
R

0.0002 La + 0.2822
, (4)

where La is the adaptation luminance in cd/m2.

As the masking model (Equation 3) was verified in JPEG 2000 ap-
plications, we did not calibrate it for supra-threshold data. How-
ever, we believe that the supra-threshold performance is also im-
proved as a consequence of the threshold calibration, and the preci-
sion of the model is more than sufficient for various applications as
illustrated in the next section.

6 Applications

In the previous sections we showed that the use of visual signifi-
cance results in smoothing that better correlates perceived strength
of edges. However, applications like image abstraction through
edge preserving smoothing or detail enhancement produce images
whose quality is judged aesthetically. Thus, despite the obvious dif-
ferences between the perceptual and non–perceptual methods, one
can not objectively prove that a visually significant edge model pro-
duces better results. In this section we present three applications
that rely on importance of image features, and thus the improve-
ment through a perceptual model can be demonstrated through ex-
amples. All results are generated using the extended EAW frame-
work. The edge maps used in image retargeting and panorama
stitching are generated by using the inverse of Equation 1 as dis-
cussed in Section 3.

6.1 Image Retargeting

Several techniques were recently proposed to allow content-aware
image and video retargeting [Avidan and Shamir 2007; Wang et al.
2008; Rubinstein et al. 2009]. The central part of those approaches
is usually an importance map (energy function) that describes the
importance of areas in the image. Using the map, the retarget-
ing operator then preserves the important areas at the expense of
less-important ones. Several possibilities of the importance map
construction were proposed [Avidan and Shamir 2007], however a
simple Sobel operator was utilized in many cases.

The visually significant edges are a natural candidate to construct
such importance map in a perceptually more convincing way. We

show the results of seam carving image resizing operator [Avidan
and Shamir 2007] using traditional importance map and the new
map calculated by our technique in Figures 9 and 10. The tradi-
tional technique removes more visually significant areas than when
we build importance map using our method. Our results indicate
that the difference between both methods is especially significant
if the visually significant details are located in dark image regions.
While the perception of brighter details (> 100 cd/m2) can be
approximated by a simple compressive logarithmic function, our
method has the advantage of faithfully modeling perception in all
luminance levels and taking masking into account, and thus overall
produces more reliable results (Fig. 10 (c) and (d)). In fact, the suc-
cess of particular importance map construction varies with the input
images and the absence of a universal retargeting operator led to the
proposal of a hybrid approach combining several techniques [Ru-
binstein et al. 2009]. Our results suggest that visual significance
can be guideline in importance map computation and can provide a
basis for more sophisticated retargeting operators.

An advantage of our approach is that it allows perceptually based
retargeting on not just ordinary, but also high dynamic range im-
ages. In images consisting of mostly bright regions (> 100 cd/m2)
a simple logarithmic non-linearity may be sufficient to approximate
the perception of luminance. However, this method is less precise
in darker regions where Weber’s law doesn’t hold (compare Fig. 10
(f) and (g)). Moreover, visual masking may have a significant effect
in images contating many details (Fig. 9).

That said, we found that first producing a tone mapped “dual” im-
age, and then performing the retargeting on the original HDR image
using the edge strengths computed on the dual image to work well
in some cases. However, the type of tone mapping operator and
suitable parameter setting is an open question, and requires manual
interaction in comparison to our fully automated method.
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Figure 9: HDR image shrinking by seam carving (150 pixels hori-
zontally). First row left: original HDR image. Middle: result when
the Sobel operator is used for importance map construction. Right:
result using the proposed visually significant edges. Images are
tone mapped [Drago et al. 2003] for the display purposes. Second
row: edge strength maps. Left: edges detected by Sobel operator in
the input HDR image. Right: visually significant edges – note the
differences in absolute values and in the ratios of edge strenghts
(due to the JND scaling), and the structural differences in the edge
map (due to the masking).
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Figure 10: HDR image shrinking (400 pixels horizontally) by seam carving. First row: (a) original HDR image, (b) Sobel operator
overestimates the strength of edges in the sky, which results in carving of the visually important palm tree, (c) results are similar if the Sobel
operator results are compressed by the logarithm function, (d) the proposed method results in less distorted image appearance, especially
evident at the tree’s body. Images are tone mapped [Drago et al. 2003] for the display purposes. Second row: (e,f,g) corresponding edge
strength maps.

6.2 HDR Tone Mapping

As mentioned in experimental evaluations [Kuang et al. 2007;

Čadı́k et al. 2008], the goal of tone mapping is manifold: some
tone mapping operators are focused on compressing the image lu-
minance while preserving the overall scene appearence. For exam-
ple, the outcome of such an operator applied to a dark scene would
not reproduce the details that are not visible by the human eye due
to insufficient lighting. The other group of tone mapping operators
on the other hand focuses on preserving as many scene details as
possible irrespective of their visibility magnitude.

The tone mapping from the original edge avoiding framework [Fat-
tal 2009] can be classified as strictly detail preserving. In the spirit
of previous decomposition-based approaches [Tumblin and Turk
1999; Fattal et al. 2002; Durand and Dorsey 2002; Farbman et al.
2008], the technique flattens the coarsest scale of the EAW image
decomposition by factor β and the other scales are progressively
compressed so that the wavelet coefficients in a coarser scale are
decreased more than in a finer scale (by factor γk, where k is the
scale). This corresponds to an observation that the coarser scales
often contain very high magnitude differences and should be there-
fore compressed much more than the finer scales (details) that we
usually aim to preserve. The technique operates on logarithm of the
input luminance that can be thought of as a simple approximation
of human luminance perception, but having not accounted for other
prominent perceptual phenomena (e.g. the perception of contrast),
the results look unnatural, see Fig. 11 (left).

The results produced by the technique mentioned above may be
suitable for certain scenarios (e.g. the best reproduction of de-
tails), but not for reproducing the appearance of a scene. However,
we can achieve much better results (in this sense) by replacing the
logarithm function with the perceptual framework proposed in this
paper. We thus obtain image decomposition coefficients that are
closer to the human visual system response (accounting for phe-
nomena described in Section 4) and those are then compressed in
a same way as above for the display purpose. As expected, the re-
sults are then more natural renditions of the original HDR images
and preserve the scene appearence, see Fig. 11 (right).

6.3 Panorama Stitching

An HDR panorama generation approach proposed by Ward [2006]
makes use of edge maps to stitch adjacent images of a scene. In this
method images are decomposed into two layers: a low pass layer
that corresponds to 1/16th of the image’s original resolution and
a high frequency layer. The low frequency layers of adjacent im-
ages are blended together using a sinusoidal weighting function,
whereas the high frequencies are spliced at locations containing
strong edges. The method is guided by a compound edge map E
obtained as a combination of edge maps of pairs of overlapping im-
ages (Eleft, Eright). We adopted the following technique to con-
struct the compound edge map:

E = max(Eleft · Eright, 0). (5)

In other words: if there is a strong edge in the left image, but
not in the right image, then this is possibly due to a misalignment
and should not be preferred for splicing. On the other hand, loca-
tions containing strong edges with the same sign in both images are
strong candidates for splicing.

For panorama stitching application, we inverted the neighbor-
hood masking in our model, so that it amplified the masked
edges. This is motivated by observation that the masked edges
also mask the seams so that they are less disturbing in the fi-
nal panorama. We empirically found that multiplying R with
(2 ·Neighborhood masking)2 to work well in practice. We com-
pare the results obtained using our technique and the traditional
Sobel operator in Fig. 12. The source images were inverse tone
mapped prior to processing by simple contrast stretching.

7 Conclusion

We presented a method that localizes image edges and scales their
strength proportionally to their visual significance. We discussed a
simple and efficient HVS model that accounts for prominent fea-
tures of the visual system such as luminance adaptation, spatial fre-
quency sensitivity and visual masking. In our experience the visual
significance computation in EAW framework increases the compu-
tation time by 30 − 50%.

The HVS model is integrated into the edge avoiding wavelet frame-
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Figure 12: An HDR panorama stitched from three different, not precisely aligned pictures using Ward’s technique [Ward 2006]. Top: the
result obtained using Sobel operator, Bottom: the result using the proposed visually significant edges. The images are tone mapped [Reinhard
et al. 2002] for display purposes.

work which provides a convenient basis for edge preserving image
decomposition, and also extraction of edges by inverting the edge–
stopping citerion. The choice of the framework is not crucial for
specialized applications that rely either solely on image decomposi-
tion or edge extraction. For example, the HVSmodel can be applied
to multi–scale image gradients for the former type of applications,
or to an image pyramid obtained through bilateral filtering for the
latter type of applications. The wavelet framework is convenient in
the sense that it can serve both purposes in one framework, and is
faster than others in decomposition.

The main limitation of this work is the absence of models for higher
level mechanisms of the visual system such as gestalt properties and
prior knowledge. Unfortunately modeling those mechanisms is not
trivial because of their complexity and consequently the hardness
of designing reproducible experimental setups to determine their
effects.

In the light of recent work [Cole et al. 2008] that shows luminance
edges are in fact prominent image features, we believe that the visu-
ally significant edges are good candidates for determining the rich-
ness of detail in images. Such a measure, combined with others
such as image brightness, overall contrast and colorfulness can pro-
vide a good estimate of image quality in the absence of a reference
image (no–reference image quality assessment). As a future direc-
tion we would like to investigate the possibility of designing such a
metric that utilizes visually significant edges.
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