
Resource Efficient Mountainous Skyline Extraction
using Shallow Learning

Touqeer Ahmad∗, Ebrahim Emami†, Martin Čadı́k‡, George Bebis†
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Abstract—Skyline plays a pivotal role in mountainous vi-
sual geo-localization and localization/navigation of planetary
rovers/UAVs and virtual/augmented reality applications. We
present a novel mountainous skyline detection approach where
we adapt a shallow learning approach to learn a set of filters to
discriminate between edges belonging to sky-mountain bound-
ary and others coming from different regions. Unlike earlier
approaches, which either rely on extraction of explicit feature
descriptors and their classification, or fine-tuning general scene
parsing deep networks for sky segmentation, our approach learns
linear filters based on local structure analysis. At test time, for
every candidate edge pixel, a single filter is chosen from the set of
learned filters based on pixel’s structure tensor, and then applied
to the patch around it. We then employ dynamic programming
to solve the shortest path problem for the resultant multistage
graph to get the sky-mountain boundary. The proposed approach
is computationally faster than earlier methods while providing
comparable performance and is more suitable for resource
constrained platforms e.g., mobile devices, planetary rovers and
UAVs. We compare our proposed approach against earlier skyline
detection methods using four different data sets. Our code is
available at https://github.com/TouqeerAhmad/skyline detection.

I. INTRODUCTION

Skyline detection is the problem of finding a path that
extends from left-most column of an image to the right-
most and divides an image into sky and non-sky regions.
Finding skyline is a challenging vision problem due to non-
linear nature of the skylines, variations in the sky and non-
sky regions due to geographical terrains and weather con-
ditions. Skyline detection serves as the underlying method
for many practical applications and have been investigated
for navigation and localization of Unmanned Aerial Vehicles
(UAVs) [1]–[9], planetary rover and vehicle localization [10]–
[17], augmented reality and tourism applications [18]–[20],
geolocation of mountain and desert images [18], [21]–[25],
marine security and ship detection [26]–[29].

Sky segmentation and skyline detection are two related
yet distinct problems. In a general scene parsing sense, sky
segmentation is equivalent to semantically identifying all the
pixels belonging to the sky region where the sky region may
or may not extend from left-to-right and may be present in a
small portion of the image. In the case of the skyline extraction
problem, a skyline is thought of as a visible boundary which

extends from left-to-right and divides the input image into
two main regions i.e. sky and non-sky. Depending upon the
specificity of the non-sky region, the skyline could refer to the
mountainous skyline, sea-shore skyline or city skyline. While
any general scene-parsing network can be fine-tuned for sky
segmentation as demonstrated in [30], the two problems are
not inter-changeable, unless the assumptions for skyline hold
true.

Recent efforts for skyline detection can be grouped into
two main categories. The first group of approaches employs
supervised learning to discriminate between skyline and non-
skyline pixels by either using feature descriptors or directly
discriminating based on the pixel intensities [31]–[37]. Some
approaches belonging to this category use edge information
while others solely rely on discrimination power of the trained
classifier. These approaches generally address skyline detec-
tion as a shortest-path problem and incorporate dynamic pro-
gramming (DP) which was first utilized for skyline detection
problem in [38]. The second type of approaches address the
skyline detection in the context of sky-segmentation problem
and generally rely on Convolutional Neural Networks (CNNs)
to segment out the sky regions [19], [39], [40]. There have
also been some attempts to fine-tune semantic segmentation
networks for sky segmentation [30]. While both types of
methods perform reasonably well for skyline detection, they
are computationally expensive solutions e.g., in some cases,
single or multiple feature descriptors around each pixel need to
be extracted before passing them through the trained classifier
(Support Vector Machines/Convolutional Neural Networks) or
directly employing dense deep networks which are inherently
quite expensive. Due to expensive computational and mem-
ory requirements, such approaches are not very suitable for
resource-constrained platforms e.g., mobile devices, UAVs and
planetary rovers. To address these issues, in this paper we
present a skyline detection approach which builds upon a
recently introduced shallow learning framework [41] targeted
for resource-constrained devices and provides a reasonable
trade-off between computational cost and performance.

The rest of the paper is structured as follows: Section II
provides the details of earlier work on skyline detection meth-
ods relying on dynamic programming (DP) and establishes the



foundation for our proposed approach and its comparisons.
In Section III, we describe the shallow learning framework
employed for our proposed skyline detection approach. Ex-
perimental details and results are provided in Section IV. The
paper is concluded with pointers for future work in Section
V.

II. SKYLINE DETECTION USING DYNAMIC PROGRAMMING

In this section, we outline the details of earlier skyline
detection methods which address the underlying problem as
graph-search and rely on dynamic programming to solve
it. Since our proposed approach is also based on dynamic
programming, it is important to describe the details of these
methods from comparison view-point and building the basis
of the proposed approach.

A. Skyline Detection as Graph Search Problem

Lie et al. [38] are the first one to formulate skyline detection
as a multi-stage graph search problem. Given an M × N
image, the image is first passed through an edge detector
to compute a binary edge map E(i, j) where 1/0 imply the
presence/absence of an edge pixel:

E(i, j) =

{
1, if (i, j) is an edge pixel,
0, otherwise.

(1)

They then used the edge map E(i, j) to build an M × N
multi-stage graph G(V,E,Ψ,Φ) where each pixel in the map
corresponds to a graph vertex vij ; a low cost l is associated
with edge pixels (vertices) while a very high cost (i.e., ∞) is
associated with non-edge pixels as shown below:

Ψ(i, j) =

{
l, if E(i, j) = 1,

∞, otherwise.
(2)

Ψ(i, j) is the cost associated with vertex i in stage j (i.e.,
vij ∈ V ). It should be noted that use of ∞ reflects a node
with a high numeric cost. They have further used a gap filling
process to address edge-gaps. Given a node i in stage j,
its neighborhood in the next stage j + 1 is defined by a δ
parameter, that is, the number of nodes to which i could be
connected in stage j + 1. The edges from i to its neighbors
are associated with costs equal to the vertical absolute distance
from it as shown in the equation below:

Φ(i, k, j) =


|i− k|, if E(i, j) = E(k, j + 1) = 1

and |i− k| ≤ δ,
∞, otherwise.

(3)

If a node i in stage j cannot be connected to any node in
stage j+1 within δ distance, a search window is defined using
two parameters: δ and tolerance-of-gap (tog). If an edge node
k is found within the search window, gap filling is performed
by introducing dummy nodes between node i in stage j and
node k within the search window j+tog and a high cost is
associated with such dummy nodes. More details for Lie et
al. can be found in [38] or [36].

B. Skyline Detection using Supervised Learning and Edges

In a series of work [30]–[36], Ahmad et al. extended the
skyline detection approach of [38] by incorporating supervised
machine learning techniques. Interested readers are requested
to please consult their original papers [30]–[36].

In a simple extension of the binary edge map approach of
Lie et al., to ensure good continuity, Ahmad et al. [32], [34]
used the gradient information. They enforced the constraint
that the difference between gradient magnitudes of adjacent
pixels is minimized. The gradient magnitude at each pixel of
the input image I(i, j) is computed as follows:

∇(i, j) = Γ[I(i, j)], (4)

where Γ is a function which takes a gray scale image I
as input and returns the gradient magnitude image ∇. Next,
the difference of the gradient magnitude image d∇(i, j) is
computed:

d∇(i, j) = |∇(i, j)−∇(i, j + 1)|. (5)

The normalized (i.e., between 0 and 1) gradient magni-
tude and gradient difference images are combined through a
weighted average:

Gr(i, j) = w1 ∗ d∇(i, j) + (1− w1) ∗ (1−∇(i, j)), (6)

where w1 is the weight parameter. Then they used the weighted
average Gr as the nodal cost:

Ψ(i, j) = Gr(i, j), (7)

whereas, the link costs may be initialized using equation
(3). In [31], [34], Ahmad et al. considered Maximally Stable
Extremal Edgess (MSEEs) and classification as a way to filter
out non-skyline edges. They first applied Canny edge detector
using various thresholds and kept only stable edges over a
range of thresholds which they called MSEE edges. The MSEE
edge map Em(i, j) is further filtered by classifying each
MSEE pixel (i, j) as belonging/not-belonging to the skyline
using the trained classifier:

C(i, j) =

{
1, if (i, j) pixel is classified as skyline,
0, otherwise.

(8)

In [31], [32], [34], authors experimented with various tex-
ture features and their combinations for classification and
found the SIFT-HOG combination yielded the lowest false
negative rate. The edge map E+(i, j), comprising of the hori-
zon classified MSEE edges, was used to define the nodal costs
in the context of DP. Specifically, the edge map comprising
of positively classified MSEE edge points can be expressed as
follows:

E+(i, j) =

{
1, if Em(i, j) = 1 and C(i, j) = 1,

0, otherwise.
(9)

Authors have incorporated the classification information
into nodal costs in two ways: (i) by using the binary costs
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Fig. 1. Proposed Skyline Extraction Approach: (a) input image, (b) output of the Canny edge detector, (c) predicted score for each pixel belonging to skyline
using selected linear filter based on pixel’s structure tensor (brighter red and blue intensities respectively reflect more and less confidence for pixel belonging
to the skyline), (d) gradient strength estimated as part of the structure tensor, (e) weighted predicted skyline score combined with gradient strength, (f) found
skyline by dynamic programming overlaid on the original query image in red.

based on E+(i, j) and (ii) by using the normalized classifica-
tion scores S(i, j) for these edges. For each case, the nodal-
cost (2) changes accordingly:

Ψ(i, j) =

{
l, if E+(i, j) = 1,

∞, otherwise.
(10)

Ψ(i, j) =

{
S(i, j), if E+(i, j) = 1,

∞, otherwise,
(11)

whereas, by using E+(i, j) the link-cost (3) adapts accord-
ingly:

Φ(i, k, j) =


|i− k|, if E+(i, j) = E+(k, j + 1) = 1

and |i− k| ≤ δ,
∞, otherwise.

(12)
They further combined classification scores with gradient

information and adjusted the nodal-cost as below:

Ψ(i, j) = w2 ∗ S(i, j) + (1− w2) ∗Gr(i, j), (13)

where w2 is a weight parameter.

C. Skyline Detection using Dense Classification Score Images

In the second set of their work [33], [35], [36], Ahmad et
al. investigated to exclude the edge-detection and generated
a dense classification score image (DCSI) which reflects the
likelihood of a pixel belonging to the skyline. The resultant
DCSI is then used directly to initialize the nodal-cost:

Ψ(i, j) = S(i, j). (14)

The difference between Eqs. (11) and (14) is that in the for-
mer, classification score is used to initialize only those nodes
which are MSEE edges and have been positively classified as
skyline edges whereas in the latter, all the nodes have been
initialized with the normalized classification scores without
using any edge information. In the former case SIFT-HOG

features were extracted around (i, j) location while in the latter
normalized pixel intensities were used.

For this work, they have investigated both Support Vector
Machine (SVM) and Convolutional Neural Network (CNN)
classifiers and resultant dense classification score images are
identified by SVM-DCSI and CNN-DCSI respectively. For
computational improvement, they further experimented by
retaining only the best m-scores per stage (column) of the
multi-stage graph which they termed as SVM-mDCSI and
CNN-mDCSI. In extended work [36] they investigated the
fusion strategies by combining MSEE edges, Canny edges or
gradient information with their DCSI images.

III. SHALLOW LEARNING

Our shallow learning is inspired and based on the BLADE
framework introduced by Getreuer et al. [41] which is a gen-
eralization of popular super-resolution approach RAISR [42].
BLADE has been demonstrated to perform well for various
computational photography applications including denoising
[43], demosaicing and image stylization [44]. Unlike earlier
applications, we adopt this shallow learning framework for
classification and explore its applicability for mountainous
skyline extraction problem. Below, we briefly describe the
inference and training steps of BLADE for a sample image
restoration problem i.e., denoising and then extend these steps
for our skyline extraction problem.

A. Spatially Varying Inference

Let z and u be input (i.e., noisy image) and output (i.e.,
denoised image) gray-scale images respectively. A pixel at i-th
spatial location is specified by zi. Let there be a set of K linear
finite impulse response (FIR) filters denoted by h1, · · · ,hk.
The coefficients of these filters are learned during training
phase. At inference time, a spatially varying filter of size n×n
is selected from the learned filter bank and applied on patch



TABLE I
AVERAGE ABSOLUTE ERROR FOR EXISTING AND PROPOSED APPROACHES

Approach Basalt Hills Web
µ σ min max µ σ min max

Edges Only [38] 5.55 9.46 0.53 49.31 9.15 17.92 0.38 93.02
Gr ( [32], [34]) 3.99 6.35 0.18 31.33 11.86 26.81 0.15 121.48

SIFT+HOG Edges ( [32], [34]) 0.57 1.02 0.00 3.58 0.87 1.03 0.43 7.05
SIFT+HOG Scores ( [32], [34]) 0.41 0.81 0.00 3.08 0.97 1.57 0.38 12.19

SIFT+HOG Scores + Gr ( [32], [34]) 0.43 0.81 0.00 3.08 1.30 3.98 0.38 34.95
SVM-mDCSI ( [33], [36]) 1.01 0.29 0.62 1.76 1.28 1.20 0.37 6.21
CNN-mDCSI ( [33], [36]) 0.75 0.23 0.42 1.28 1.41 1.49 0.27 10.79

SVM-DCSI+Gr ( [36]) 0.60 0.29 0.17 1.31 4.86 15.98 0.14 98.46
SVM-DCSI+MSEE Edges ( [36]) 0.73 0.32 0.48 2.07 0.85 0.89 0.35 5.05
SVM-DCSI+Canny Edges ( [36]) 0.77 0.35 0.48 2.07 0.78 0.76 0.35 4.84

Proposed 1.45 1.55 0.24 5.69 7.85 32.64 0.29 203.34

extracted around the central pixel zi. In vector notation, the
inference can be written as a dot-product,

ûi = (hs(i))TRiz, (15)

where, Ri extracts a patch centered around pixel i rearranged
as vector, hs(i) is the filter selected from the filter bank for
the i-th pixel based on its structure tensor, (.)T denotes the
vector transpose operator and ûi is the inferred pixel value.

For computational photography and stylization tasks such as
studied in [41], [43], [44], the above operation is conducted
for each pixel in the input image. For the skyline extraction
problem, we first perform edge detection on the input image
and then extract the gray-scale patches only around pixels
detected as edges. The inferred pixel value ûi reflects the score
of i-th pixel belonging to the skyline.

B. Learning the Filter Bank
To learn the set of FIR filters h1, · · · ,hk, training set

comprising of input image and output target pairs is employed.
Depending on the underlying application, z and u are the
appropriate image pairs e.g., for learned denoising, z and u
would be noisy and noise-free images respectively. The filter
set is learned by minimizing the objective function comprised
of L2 loss and quadratic regularization term i.e.,

h1,··· ,hk

∑K

k=1
(hk)TQhk +

∑
s(i)=k

(ui − (hk)TRiz)2,

(16)
where, Q determines the regularization and encourages the
learned filters to be smooth. The minimization described in
(16) can be solved independently for each filter and amounts
to a multivariate linear regression with regularization listed
below:

h = (Q + ATA)−1ATb. (17)

All the training examples belonging to a specific filter are
accumulated in an (n2 + 1)× (n2 + 1) gram matrix G,

G← G +

(
Riz
ui

)(
Riz

Tui
)
. (18)

Once the training samples are accumulated in G, the
respective matrices ATA and ATb for (17) can be accessed:(

ATA ATb
bTA bTb

)
← G. (19)

To learn the filters for skyline detection, we use positive
training examples extracted along the ground truth skyline
boundary and equal number of negative training examples
extracted from random edge locations not in the vicinity of
the skyline. We use two specific intensity levels as target ui
for positive and negative examples. At inference time, after
normalization, ûi reflects the confidence score of an edge-pixel
belonging or not belonging to the skyline.

C. Filter Selection using Structure Tensor

Following BLADE [41], we use local structure tensor to
select the filter for a given pixel both during training and
inference. Structure tensor is a way to provide local gradient
estimate by employing Principal Component Analysis (PCA)
of the gradients of i-th pixel’s local neighborhood Pi by
minimizing:

a

∑
j∈Pi

wi
j(a

Tgj)
2, (20)

where gj is the gradient at j-th pixel and wi
j is the spatial

weighting e.g., coefficients of a Gaussian kernel. Instead of
computing structure tensor using only Luma channel as done
in [42], we adopt computing it jointly using all color channels
as in [41]. Using a 2 × 3 Jacobian matrix of color-wise
gradients,

Gj =
[
gR
j gG

j gB
j

]
, (21)

the unit vector a is found by minimizing (20) and replacing
gj with Gj :∑

j

wi
j‖aTGj‖2 = aT (

∑
j

wi
jGjG

T
j )a = aTTia. (22)

The spatially weighted structure tensor Ti for i-th pixel can
be written as:

Ti =
∑
c

∑
j

wi
j

[
gcx,jg

c
x,j gcx,jg

c
j,j

gcx,jg
c
y,j gcy,jg

c
y,j

]
, (23)

where c ∈ [R,G,B] the three color channels and[
gcx,j , g

c
j,j

]T
= gc

j . The three features computed from the
eigen analysis of this 2 × 2 matrix Ti serve as the indices
for feature selection after their respective quantization into
pre-specified bins. The three features being computed are: (i)



Fig. 2. Examples of good skyline detections by the proposed approach. Detected skylines are overlaid in red.

orientation as the angle of the dominant eigenvector reflecting
orientation of the gradient, (ii) strength as the square root of
the dominant eigenvalue

√
λ1 reflecting gradient magnitude

and (iii) coherence characterizing the amount of anisotropy of
local structure defined as:

√
λ1 −

√
λ2√

λ1 +
√
λ2
, (24)

where λ1 ≥ λ2 ≥ 0 are the eigenvalues of Ti.

D. Proposed Skyline Detection Approach

Unlike Ahmad et al., we do not rely on extracting fea-
ture descriptors (and their combinations) and then training
SVM/CNN classifiers. Instead, for every given pixel, a linear
filter is chosen from the learned filter bank based on its
structure tensor and applied (dot product) to the patch around
the central pixel. Further, we generate the prediction only for
the pixels detected as edges by the edge-detector. In spirit,
our approach is closer to that of SIFT-HOG classification score
described in (11), however we use Canny edge detector instead
of MSEE edges. Using Eqs. (15), (2) and (11), the nodal-cost
can be described as:

Ψ(i, j) =

{
(hs(k))TRkz, if E(i, j) = 1,

∞, otherwise,
(25)

where, k and (i, j) correspond to the same central pixel in two
different formulations. Although (25) can be directly used to
solve the shortest path problem through dynamic programming

to find the skyline, we have found through experimentation that
complementing the normalized prediction score with gradient
strength improves the results. Since gradient magnitude

√
λ1

is already computed as part of structure tensor analysis, we
do not encounter any computational overhead and combine
the normalized prediction score with the normalized gradient
strength:

Ψ(i, j) = v∗(1.0−(hs(k))TRkz)+(1−v)∗(1.0−
√
λ1(i, j)),

(26)
where v is a weight parameter. Both normalized gradient
strength [0, 1] and normalized prediction score [0, 1] are sub-
tracted from 1.0 as we are trying to solve a minimization prob-
lem through dynamic programming. Figure 1 demonstrates the
steps involved in our proposed skyline detection approach.

IV. EXPERIMENTAL SETUP

A. Data Sets for Skyline Detection

There are several public data sets annotated for the problems
of mountainous skyline detection and visual geo-localization
which are briefly described below.

Basalt Hills and Web: The Basalt Hills data set is a subset
of a larger data set captured by placing stereo cameras on an
autonomous robot and navigating it through the Basalt Hills
in California [45] to mimic a planetary-rover environment.
Ahmad et al. have manually generated ground truth for 45
images from this data set and have used for their experiments.
They have used 9 out of these 45 images as their training set



Fig. 3. Examples of faulty skyline detections by the proposed approach. Detected skylines are overlaid in red.

TABLE II
AVERAGE ABSOLUTE ERROR FOR PROPOSED APPROACH

Approach Basalt Hills (Full) Web (73)
µ σ min max µ σ min max

Proposed 1.33 1.45 0.23 5.69 0.79 0.68 0.29 4.66

TABLE III
IMPACT OF FILTER SIZE ON SKYLINE DETECTION PERFORMANCE

Filter Size Basalt Hills (Full) Web (73)
µ σ min max µ σ min max

7× 7 1.3334 1.4542 0.23 5.69 0.7919 0.6864 0.29 4.66
9× 9 1.3402 1.4559 0.23 5.69 0.7921 0.6610 0.29 4.33

11× 11 1.3419 1.4547 0.23 5.69 0.7830 0.6366 0.29 4.45
13× 13 1.3557 1.4639 0.23 5.69 0.7887 0.6691 0.29 4.54
15× 15 1.3649 1.4593 0.23 5.69 0.7941 0.6872 0.29 4.68

Fig. 4. Normalized histograms for Basalt Hills and Web data sets. In each
case, for about 90% of the images we get an average absolute pixel error of
less than 4.0 pixels which corresponds to a very good detection.

and remaining 36 along with the web set as their test set. The
web data set is comprised of 80 images gathered from the web
for which Ahmad et al. manually generated the ground truth
skyline boundaries and used in their evaluations.

CH1 and CH2: CH1 [23] and CH2 [22] are visual geo-
localization data sets which contain a total of about one
thousand images with ground truth GPS location and FOV
information. These datasets do not provide the ground truth
camera orientation information and sky/non-sky segmentation
is only available for 203 images belonging to CH1 data set.

GeoPose3K: Brejcha and Čadı́k [46] introduced the Geo-
Pose3K data set that provides over three thousand images

with ground truth GPS, orientation and semantic labels1. This
is probably the biggest data set available for mountainous
geo-localization. However, for skyline extraction, this is an
extremely challenging data set as many images do not have
visible skylines and it may be difficult for a human annotator to
properly mark the ground truths for such images without any
additional information e.g., relying on Digital Elevation Mod-
els (DEMs) or Google Earth. We feel this data set is suitable
for camera orientation and GPS estimation where the visible
portions of the terrain can be used to align with the DEMs,
but it is challenging for skyline extraction approaches which
have the underlying assumptions of skyline being visible and
extending from left-to-right. The data set is also suited for
evaluating general sky segmentation approaches as demon-
strated in [30], where specifically designed learning-based
skyline detection approaches performed poorly compared to
scene parsing networks fine-tuned for sky segmentation.

B. Evaluation Metric

To quantitatively evaluate the performance of the proposed
approach and compare against earlier approaches, we calculate
the average pixel-wise absolute distance (Aerr) between the
detected and ground truth skylines:

Aerr =
1

N

N∑
j=1

|Pd(j) − Pg(j)|, (27)

where Pd(j) and Pg(j) are the positions (rows) of the detected
and ground truth skyline pixels in column j and N is the
number of columns in the test image.

1Semantic labels are synthesized from a Digital Elevation Model.



TABLE IV
IMPACT OF TRAINING SET ON SKYLINE DETECTION PERFORMANCE

Test Set
Training Set CH1 Basalt Hills (Full) Web

µ σ µ σ µ σ
CH1 − − 1.33 1.45 7.85 32.64

Basalt Hills (Full) 109.84 144.34 − − 14.62 54.81
Web 101.87 140.18 1.27 1.39 − −

C. Results

Base Results: Unless otherwise stated, we use 203 images
from the CH1 [23] data set to learn the filter bank, where
by default we used a filter size of 7 × 7 and 6, 3 and
16 quantization bins for strength, coherence and orientation
computed from structure tensor analysis. We use Web and
Basalt Hills data set to report our base results. For Basalt
Hills data set, we first report results for 36 out of 45 images
to be consistent with other reported results for earlier methods
and then separately report the results for all 45 images. Table
I shows mean (µ) and standard deviation (σ) of the evaluation
metric for our proposed approach against other methods. For
all of the compared methods, we take the reported numbers
from the individual papers which are specifically noted along
with the approach’s name.

As can be seen from table I, our proposed approach
performs poorer than other learning-based approaches where
dedicated descriptors and non-linear classifiers are employed,
whereas it outperforms other edge-based approaches which do
not have any learning component. As reported in [41], [43],
the BLADE framework is well-suited for resource constrained
platforms e.g., mobile devices. Inheriting from BLADE, our
skyline extraction approach provides a good trade-off between
performance and computation and is suitable for applications
with limited on-line memory and compute resources e.g., aug-
mented reality, visual geo-localization and navigation of UAVs
and planetary rovers. To better understand the performance
of our approach, we plot the normalized histograms of the
average absolute error for Basalt and Web data sets in figure
4. It is clear that for only 10% of the images in each data
set, we get an average pixel error of 4.0 or more. Figure 2
shows some of the good skyline detection results for the Web
data set, whereas some failure cases of the proposed approach
from the same data set are shown in figure 3. As mentioned
before, Ahmad et al. reported results for 36 out of 45 images
for Basalt Hills data set. For a direct comparison, in table
I, we also reported the error for our approach for the same
36 images, however, for completeness table II reports results
for all 45 images identified as Basalt Hills (Full). For Web
data set, our approach resulted into an error of 4.0 pixels or
more for 7 out of 80 images; excluding these images from
the error computation results in mean and standard deviation
which are directly comparable to the existing computationally
intensive learning based methods. The error metric for these
73 web images are also reported in table II identified by the
column Web (73). We have identified number of reasons for

partial or full failure cases. Firstly skyline or portion of skyline
are not strong edges and are missed by the edge detector
and subsequently a prediction score is not generated for such
pixels. Secondly the employed training data is limited which
caused some of the feature bins to be not learned very well.
At test time if a pixel falls to such a bin based on its structure
tensor, the resultant prediction score might not be accurate.
Finally there exist a shortest path in the image extending from
left-to-right which is less expensive than the skyline path and
hence been found by dynamic programming as the solution
(e.g, middle image in figure 3).

Filter Size: Since filter size is directly related to the
computational overhead, following [41], [43] we have used
a filter size of 7× 7 for our base experiments. We conducted
an experiment to evaluate the impact of filter size on skyline
detection performance. Table III shows the performance of
skyline detection on Basalt Hills (Full) and Web (73) as
the filter size is varied. As evident from table III, there is
no noticeable effect on skyline detection due to change in the
filter size.

Data Set Variation: We have demonstrated results where
CH1 data set has been used as a training set and Basalt Hills
and Web data sets have been used as the test sets. To study
the affect of the training set, we conducted an experiment
where each of the three data sets serves as a training set
while the remaining two are used as the test sets. Table IV
demonstrates the results for this experiment. As expected the
performance on the test set is proportional to the versatility
and number of images in the used training set, e.g., in case of
Basalt as a training set, the performance of skyline detector on
Web set is poorer than when CH1 data set is used as training
set. Similarly, on CH1 data set the performance is relatively
better when trained on Web set compared to when trained on
Basalt set. The overall skyline detection performance on CH1
data set is poor compared to Basalt and Web data which is
understandable as CH1 data set is more challenging compared
to the other two.

GeoPose3K: As mentioned earlier the GeoPose3K dataset
[46] is more suited for general scene parsing approaches
where sky segmentation is the underlying objective instead
of skyline detection. Nonetheless, we provide the comparison
of our proposed approach on GeoPose3K in table V where
we report the numbers for existing approaches from [30]
(Table III in that paper). In [30], authors fine-tuned general
scene-parsing deep networks for sky segmentation using CH1
dataset and provided a comparison between scene-parsing and
specific skyline detection methods using 2895 images from



TABLE V
COMPARISON OF THE PROPOSED APPROACH ON GEOPOSE3K DATASET

Approach Accuracy Absolute Error
µ σ

FCN8s-Pascal [30] 0.9551 32.161 57.510
FCN16s-Pascal [30] 0.9539 32.888 58.193
FCN32s-Pascal [30] 0.9520 33.534 57.588

FCN8s-SiftFlow-g [30] 0.9491 34.975 53.334
FCN8s-SiftFlow-s [30] 0.9563 31.399 55.052

Horizon-ALE-CH1 [30] 0.9411 43.959 86.038
Horizon-DCSI-CH1 [30] 0.8743 99.742 160.252

SegNet-CH1 [30] 0.8437 114.893 99.021
FCN8s-SiftFlow-s-CH1 [30] 0.9486 37.947 69.435

FCN8s-Pascal-CH1 [30] 0.9432 41.596 71.707
Proposed 0.8652 105.712 164.224

the GeoPose3K dataset. Following [30] we also report the
performance of our proposed approach on the same 2895
images in table V where we used CH1 dataset to learn the filer
bank. In addition to the pixel-wise absolute distance, we also
report the segmentation accuracy to be consistent with [30].
As expected our approach is out-performed by scene parsing
approaches adapted for sky segmentation while comparable to
specifically designed skyline detection methods e.g., Horizon-
DCSI-CH1.

D. Resource Comparison

In table VI, we report the memory foot-print and the
inference time for our proposed approach and compare it
against selective existing methods. Specifically, we compare
against top-performing deep networks (table V) adapted for
sky-segmentation [30] and a representative approach designed
for skyline detection i.e., Horizon-DCSI [33]. For each ap-
proach we report an average inference time for an image
size of 519 × 1388 pixels using a consistent single CPU
environment (Processor: 1.8 GHz Intel Core i5, Memory: 8GB
1600 MHz DDR3). It should be noted that we do not include
the time taken to load the coefficients/weights of a model.
As clear from VI, each of the deep networks adapted for
sky segmentation has a memory foot-print of more than 500
megabytes whereas the average inference time for specifically
designed skyline detection approach is more than 20 seconds.
Compared to these methods, our approach provides a middle
ground where the memory requirement for our 7 × 7 filter
bank is just 57KB and inference time is the best, collectively
rendering our approach best suited for resource constrained
mobile devices where memory, inference time and battery life
are of great concern. We should note that both Horizon-DCSI
and our proposed approach can further benefit from GPU
implementation as there are several identical operations being
performed for every pixel in the image.

V. CONCLUSIONS

Earlier skyline detection approaches are based on supervised
or deep learning and are unsuitable for resource constrained
devices. In this paper, we have presented a computationally
efficient and faster skyline detection approach which is based
on the shallow learning framework specifically designed for

TABLE VI
COMPARISON OF REQUIRED COMPUTATIONAL RESOURCES OF THE

PROPOSED APPROACH AGAINST OTHERS

Approach Memory (MB) Inference Time (s)
FCN8s-Pascal 513 15.39

FCN16s-Pascal 514.3 15.31
FCN32s-Pascal 519.4 16.16
FCN8s-SiftFlow 514 15.65
Horizon-DCSI 0.0022 20.45

Proposed (7× 7) 0.057 10.59

mobile and resource constrained devices. Our approach pro-
vides a good trade-off between performance and computations,
as it outperforms non-learning skyline detection methods while
comparable to supervised and deep learning based methods.
We have provided a quantitative comparison of our proposed
approach against earlier relevant skyline detection methods
using four publicly available data sets and established per-
formance metrics. We conducted experiments to study the
affect of training data and filter size. Further we provided
a resource comparison (in terms of memory foot-print and
inference-time) of our approach against existing ones. In future
work, we would investigate to improve the performance of our
approach while maintaining the same computational foot-print.
To this end, we would like to understand reasons behind the
failure cases in addition to ones identified above. In our base
experiments, the performance of the proposed approach on
CH1 data set is rather poor which is related to less versatility
of the training set (i.e., Web and Basalt data sets). This
would be another dimension of our exploration where we
aim to remedy the failure rate by generating ground truth
for CH2 data set. Additionally we intend to isolate samples
from GeoPose3K where humans can annotate skylines without
additional information so that methods designed specifically
for skyline detection can be correctly evaluated.
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[22] O. Saurer, G. Baatz, K. Köser, L. Ladický, and M. Pollefeys, “Image
based geo-localization in the alps,” International Journal of Computer
Vision (IJCV), vol. 116, no. 3, p. 213–225, 2016. 1, 6

[23] G. Baatz, O. Saurer, K. Koser, and M. Pollefeys, “Large scale visual geo-
localization of images in mountainous terrain,” in European Conference
on Computer Vision (ECCV), 2012. 1, 6, 7

[24] W. Liu and C. Su, “Automatic peak recognition for mountain images,” in
Advanced Technologies, Embedded and Multimedia for Human-centric
Computing, 2014. 1

[25] E. Tzeng, A. Zhai, M. Clements, R. Townshend, and A. Zakhor, “User-
driven geolocation of untagged desert imagery using digital eleva-
tion models,” in Computer Vision and Pattern Recognition Workshops
(CVPRW), 2013. 1

[26] S. Fefilatyev, V. Smarodzinava, L. O. Hall, and D. B. Goldgof, “Horizon
detection using machine learning techniques,” in International Confer-

ence on Machine Learning and Applications (ICMLA), pp. 17–21, 2006.
1

[27] E. Gershikov, T. Libe, and S. Kosolapov, “Horizon line detection in
marine images: Which method to choose?,” International Journal on
Advances in Intelligent Systems, vol. 6(1,2), 2013. 1

[28] W. Kruger and Z. Orlov, “Robust layer-based boat detection and multi-
target-tracking in maritime environments,” in Proceedings of Interna-
tional Waterside Security Conference, 2010. 1

[29] X. Kong, L. Liu, Y. Qian, and M. Cui, “Automatic detection of sea-sky
horizon line and small targets in maritime infrared imagery,” Infrared
Physics & Technology, vol. 76, pp. 185–199, 2016. 1
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