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Abstract

Estimating large, extreme inter-image rotations is
critical for numerous computer vision domains in-
volving images related by limited or non-overlapping
fields of view. In this work, we propose an attention-
based approach with a pipeline of novel algorithmic
components. First, as rotation estimation pertains
to image pairs, we introduce an inter-image distilla-
tion scheme using Decoders to improve embeddings.
Second, whereas contemporary methods compute a
4D correlation volume (4DCV) encoding inter-image
relationships, we propose an Encoder-based cross-
attention approach between activation maps to com-
pute an enhanced equivalent of the 4DCV. Finally,
we present a cascaded Decoder-based technique for
alternately refining the cross-attention and the rota-
tion query. Our approach outperforms current state-
of-the-art methods on extreme rotation estimation.
We make our code publicly available1.

1 Introduction

Estimating the relative pose between a pair of images
is a crucial task in computer vision, which is used in
various applications such as indoor navigation, aug-
mented reality, autonomous driving, 3D reconstruc-
tion [44, 40], camera localization [5, 45, 47], simul-
taneous localization and mapping [12, 38], and novel
view synthesis [35, 42]. The current approach to im-
age registration involves extracting features, match-
ing them, and establishing correspondence between

them. However, this approach is ineffective for in-
put pairs with little or no overlap, making it diffi-
cult to establish sufficient feature correspondences for
matching, such as in the images shown in Fig. 1.

Numerous applications [49, 32, 1] necessitate pre-
cise estimation of inter-image rotations. The preva-
lent approach for extreme 3D rotation estimation
between images with limited or no overlap, as in
Fig. 1, relates to the seminal work of Coughlan and
Yuille [10]. They introduced a technique premised
on linear structures within an image, primarily aris-
ing from three mutually orthogonal directions - one
vertical (building walls) and two horizontal (ground
pavements, roads, etc.). Similarly, ”Single View
Metrology” by Criminisi et al. [11] and extensions
[61, 26, 41] utilize parallel image lines and corre-
sponding vanishing points [19] for camera calibration.
Furthermore, relative camera rotation can be esti-
mated via illumination cues [2], by analyzing lighting
and shadow directions.

In this work, we propose a deep-learning approach
for estimating significant, extreme inter-image ro-
tations. Unlike classical formulations [10, 11] that
explicitly detect hand-crafted cues such as lines,
shadows, and vanishing points, our method directly
regresses the relative rotation from input images
through a deep neural network. Inspired by recent
successful applications of Transformers [53] in com-
puter vision tasks including object detection [8] and
image recognition [24], we adapt Transformers for
multiple tasks within the proposed pipeline shown
in Fig. 2, expanding beyond previous applications of
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(a) (b)

(c) (d)

Figure 1: The estimation of extreme 3D image rota-
tions. First row: Images pair with a small overlap.
Second row: non-overlapping image pairs. The pro-
posed scheme estimates the relative rotation between
image pairs.

Transformers.

First, we apply Transformers-Decoders to improve
the input image embeddings by distilling inter-image
information between the images by cross-decoding,
where each embedding uses the other’s embedding
as a query. This better encodes images with respect
to each other. Second, a Transformer-Encoder com-
putes a stacked multihead attention to encode cross-
attention between the latent representations of image
pairs. Thus, it improves on the 4D correlation vol-
ume (4DCV) used in prior works [51, 39, 30, 21, 15],
where 4DCVs were calculated by inner products. In-
stead of a single layer of N2 inner products as in
4DCV, the proposed Transformer-Encoder-based ap-
proach leverages multi-head attention’s advanced ar-
chitecture to better encode interactions between ac-
tivation map entries. Third, we further improve the

cross-attention encoding using a cascade of two de-
coders and a learnt rotation query, to jointly refine
the cross-attention encoding and the rotation query.
The proposed scheme is a general-purpose attention-
based architecture for estimating attributes related to
two input images such as optical flow, registration,
relative pose regression, etc. This work was moti-
vated by extreme rotation estimation, and we reserve
other applications for future work, as those will re-
quire additional task-specific modifications.

Interestingly, the attention maps computed by
our scheme, shown in Section 3.2, show that the
Transformer-Encoder assigns high attention scores to
image regions containing rotation-informative image
cues, emphasizing vertical and horizontal lines. We
also observe that the proposed approach can pre-
dict the rotation of non-overlapping image pairs with
state-of-the-art (SOTA) accuracy. Our framework
is end-to-end trainable and optimizes a regression
loss. It is evaluated on three dataset benchmarks:
StreetLearn [36], SUN360 [54] and InteriorNet [29],
with different overlap classes in indoor and outdoor
locations and under varying illumination. The ex-
perimental results in Section 4 show our model to
provide state-of-the-art (SOTA) accuracy.

In summary, our contributions are as follows.

• We propose a novel scheme for estimating ex-
treme rotations, including scenarios with mini-
mal image overlap.

• Image embeddings are enhanced via cross-
decoding, distilling inter-image information.

• A Transformer-Encoder cross-attention mecha-
nism is proposed to encode the latent space in-
teractions between image pairs.

• A decoder-decoder module infers relative rota-
tion from the cross-attention encoding by learn-
ing and applying quaternionic rotation queries.

• Quantitative evaluations demonstrate favorable
performance compared to state-of-the-art rota-
tion estimation techniques on indoor and out-
door datasets.
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2 Related Work

Our rotation estimation approach represents a spe-
cific case of the more general problem of relative
pose estimation, particularly relative pose regression
(RPR). The prevalent relative rotation estimation
technique detects and matches 2D feature points [e.g.,
SIFT [34], SURF [4]] between images. For pose lo-
calization tasks [50], PnP schemes estimate the rel-
ative 3D rotation, and the query image camera pose
is determined given the anchor image’s 3D coordi-
nates and pose. Other schemes for 3D rotation esti-
mation utilized 3D Fourier transforms [22, 23], whose
magnitude is invariant to translations. Recent meth-
ods apply end-to-end trainable deep networks to both
images [3, 14]. Graph neural networks (GNNs) en-
abled multi-image RPR via aggregating localization
cues across video frames [55, 52]. Neural radiance
fields (NeRFs) have been explored as an alternative
to traditional image or feature point storage for RPR
encoding. Some schemes employ rotation-specific
parametrizations, notably quaternions and Euler an-
gles, to estimate relative 3D rotations [59]. Such
parametrizations, especially quaternions, address the
discontinuities intrinsic to rotation representations,
attributed to the Double-Cover property. Levinson
et al. [27] investigated the SVD orthogonalization
approach for 3D rotation estimation via neural net-
works. By projecting the inferred rotation matrices
onto the rotation group using SVD, they showcased
that its integration supersedes conventional represen-
tations, advancing the state-of-the-art in diverse deep
learning paradigms. Further, Mohlin et al. [37] in-
troduced a neural network-based estimation of the
parameters for the Fisher distribution matrix, repre-
senting the probability distributions of 3D rotations.
By optimizing the negative log-likelihood loss of this
distribution, they surpassed prior benchmarks in sev-
eral real-world datasets. Similarly, this optimization
methodology was used by Liu et al. to estimate the
head pose [33]. As a noteworthy baseline, Rock-
well et al. [43] devised a Vision Transformer (ViT)
to approximate the eight-point algorithm for direct
relative pose estimation between two images, show-
ing competitive performance across diverse scenar-
ios. The methods above predominantly rely on sub-

stantial overlap between input image pairs. A pro-
nounced rotation, resulting in limited overlap, could
jeopardize the accuracy of these estimations. Specifi-
cally, such techniques are ineffective for aligning non-
overlapping images. Caspi and Irani [9] demonstrated
the feasibility of aligning two image sequences with
non-overlapping fields of view in both temporal and
spatial dimensions, provided the cameras are in prox-
imity. This alignment leverages shared temporal
variations within the sequences. In a parallel vein,
Shakil [46] established that multiple nonoverlapping
video sequences, captured by uncalibrated video cam-
eras, can be synchronized through inherent temporal
fluctuations and inter-frame motion within the se-
quences. Extending beyond mere imagery, the chal-
lenge of registering non-overlapping RGB-D scans
[48, 20] serves as a notable derivative. In such cases,
a holistic representation of the scene is typically de-
duced. In our study, we adopt the framework de-
lineated by Cai et al. [7], where the task is to esti-
mate the extreme relative 3D rotation from a pair
of input images. Cai et al. introduced a scheme
in which a CNN is used to embed the images, fol-
lowed by the computation of a 4D correlation vol-
ume (4DCV) from the embeddings. An MLP is then
applied to this correlation volume, optimizing it us-
ing a cross-entropy loss, resulting in state-of-the-art
(SOTA) accuracy for non-overlapping images. Intrin-
sically, 4DCVs are an extension of Bilinear Pooling
[31, 25], encoding pairwise correlations across all en-
tities of the 2D embedding maps corresponding to the
image pair. Given their encoding capability, 4DCVs
have found applications in tasks necessitating long-
range spatial correspondences, evident in the RAFT
SOTA optical flow [51] and other optical flow mod-
els [21, 15, 56]. In a related context, 3D correlation
volumes have been utilized in deep stereo matching
tasks [39, 30, 18, 28], where the pixels in one im-
age are matched with constrained spatial support in
its counterpart. Diverging from these methods, our
proposal emphasizes the computation of an analo-
gous 4DCV by evaluating the cross-attention between
the activation maps of the image pair through multi-
head Transformer-Encoder and an associated activa-
tion mask. Specifically, this Transformer-Encoder
effectively realizes the functions of multiple aggre-
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Figure 2: The proposed architecture utilizes weight-sharing Siamese CNNs to encode the input image pair
(I1, I2) ∈ RH×W into feature maps (Î1, Î2). These feature maps are then cross-decoded by the weight sharing

Transformer Decoder-0 layers, cross-distilling (Î1, Î2) into the representations ¯̄I1 and ¯̄I2. The concatenated
refined embeddings T are input to the Transformer-Encoder alongside an attention mask M to derive the
cross-attention encoding T̂ . T̂ enters a cascade of two Transformer Decoders, where the first, Transformer
Decoder-1, enhances the cross-attention as ¯̄T , guided by the learned quaternion rotation query q̄. The
second, Transformer Decoder-2, encodes the rotation as ¯̄q, transformed via a multilayer perceptron (MLP)
to predict the relative quaternion rotation q̃.

gated correlation volumes [53] via multi-head atten-
tion (MHA). Moreover, we propose an inter-image
embedding distillation using Transformer-Decoders,
and also improve the rotation inference using a cas-
caded alternating rotation decoding.

3 Rotation Estimation Using
Cascaded Attention

The proposed methodology estimates the relative
3D rotation R ∈ R3×3 between input image pairs
I1, I2 ∈ RH×W , outlined in Fig. 2. Siamese resid-
ual U-nets [57] with weight sharing encode inputs

into activation maps Î1, Î2 ∈ Rc×K1×K2 , where c is
the number of channels and K1, K2 are spatial di-
mensions. To improve embeddings Î1, Î2 via cross-
decoding, Î1, Î2 are cross-propagated into weight-
sharing Transformer Decoder-0 units. Each input
embedding extracts task-relevant representations ¯̄I1
and ¯̄I2.

To further relate the two input images, we compute
the cross-attention T̂, an enhanced equivalent of the
4D correlation volume (4DCV) used in prior works
[51, 39, 30, 21, 15]. Therefore, we have vectorized

the rows ¯̄I1 and ¯̄I2 as two sequences ∈ Rc×K1K2 , con-
catenated as a single tensor T∈ Rc×2K1K2 , and apply
a Transformer-Encoder as in Section 3.2. The rota-
tion is decoded on the basis of cross-attention T̂ using
a novel attention-based architecture that uses a cas-
cade of two Transformer-Decoders. Initially, Trans-
former Decoder-1 is utilized to augment T̂ by incor-
porating it as a query, with guidance provided by a
learnable quaternion q̄ ∈ R4 as input. Subsequently,
the output of Transformer Decoder-1, denoted as ¯̄T,
is introduced as input to the subsequent Transformer
Decoder-2, further refining the query q̄. Finally, a
fully connected MLP layer is applied to predict the
relative rotation encoded as quaternion q̃. The 3D
rotation is regressed using its quaternion representa-
tion, q, as discussed in Section 3.4.

3.1 Image Embedding Distillation by
Cross-Decoding

Given the embeddings Î1, Î2 ∈ Rc×K1×K2 of the input
images, we aim to refine the embeddings by distilling
the information between the input images. For that,
we apply a Transformer-Decoder that is applied to
each embedding, where the other embedding is used
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as the decoder’s query. In order to transform acti-
vation maps into Transformer-compatible inputs, we
follow the same sequence preparation procedure as
in [8]. The activation maps Î1, Î2 ∈ Rc×K1×K2 are

first flattened to a sequential representation Î1, Î2 ∈
Rc×K1K2 . Each position in the activation map is fur-
ther assigned with a learned encoding to preserve the
spatial information of each location. To reduce the
number of parameters, two one-dimensional encod-
ings are learned separately for the X,Y axes. Specif-
ically, for an activation map Î we define the sets
of positional embedding vectors Eu ∈ RK1×C/2 and
Ev ∈ RK2×C/2, such that a spatial position (i, j) ,
i ∈ 1..K1, j ∈ 1..K2, is encoded by concatenating the
two corresponding embedding vectors:

Ei,j
pos =

[
Ei

u

Ej
v

]
∈ RC . (1)

The processed sequence, serving as input to the
Transformer is thus given by:

Î = Î+EA ∈ RK1K2×C , (2)

where EA is the positional encoding of Î.

3.2 Cross-Attention Computation us-
ing a Transformer-Encoder

The cross-attention between the refinement of rep-
resentations of input images ¯̄I1 and ¯̄I2 is computed
using a Transformer-Encoder with l = 2 layers and
h = 4 attention heads for each layer. An abla-
tion study of this configuration is given in Section
4.6. The cross-attention maps computed by the
Transformer-Encoder are an improved equivalent of
the 4D correlation volumes [51, 7], encoding the inter-
actions (inner-products) between all the image cues
in the activation maps. By default, a Transformer-
Encoder computes the self-attention maps of the in-
put sequence. Hence, the cross-attention T̂ of the
vectorized and concatenated activation maps T is
computed by applying the attention mask M given
in Eq. 3. The mask M nullifies the self-attention
terms in the attention maps computed throughout

1https:/anonymous.4open.science/r/AttExtremeRotation-A467/
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Figure 3: Computing the cross-attention using a
Transformer-Encoder and the input mask, M. The
mask M zeros the self-attention terms, retaining only
the cross-attention terms.

the Transformer-Encoder, while retaining the cross-
attention terms,

M =


−∞ −∞ · · · 0 0
−∞ −∞ · · · 0 0
...

...
. . .

...
0 0 · · · −∞ −∞
0 0 · · · −∞ −∞

 (3)

The use of the mask M and the corresponding
structure of the attention maps is shown in Fig. 3.
Any pair of image patches could hold valuable in-
formation about the overall geometric relationships
in an image. The Transformer-Encoder can uncover
these hints implicitly. The regions in the input im-
ages that contain rotation-related cues, explicitly or
implicitly, receive higher attention scores, as seen
in Section 2 of the Supplementary Materials sec-
tion. This leads to a more meaningful and concise
input for the distillation and the subsequent MLP
layer, ultimately improving the estimation accuracy.
The same as in [7], even when the image pairs are
non-overlapping, the Transformer-Encoder formula-
tion can predict the rotation using straight lines only
present in a single image, the same as human cog-
nitive capabilities. For example, in the extreme sce-
nario of non-overlapping image pairs the roll angle
can be estimated from a single image, by implic-
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itly assuming that buildings and their edges are per-
pendicular to ground level. Similarly, the relative
elevation angle can be estimated by assuming that
the streets and pavements are parallel to the ground
plane or by computing the corresponding vanishing
points. Most training and test datasets in this do-
main depict urban scenes, adhering to these assump-
tions.

3.3 Cascaded Attention-based Decod-
ing

Given the cross-attention tensor T̂ that encodes in-
terrelations between the paired input images, our ob-
jective is inferring the 3D relative rotation quater-
nion. To achieve this, we propose an innovative
cascaded decoding scheme that alternately refines
both the query rotation and cross-attention. Ini-
tially, Transformer Decoder-1, enhances T̂ based on

the learned quaternion q to compute T. Next, the

refined cross-attention T is queried by q to deduce
the rotated encoding ¯̄q using Transformer Decoder-2.
This cascaded inference approach could be extended
via additional dual units. However, we observed no
performance gains from additional cascades. Since
the decoder inputs are semantic representations, po-
sitional encodings are excluded.

3.4 Relative Rotation Regression

The encoded quaternion vector ¯̄q is subsequently in-
put to a Multi-Layer Perceptron (MLP) regressor,
computing the quaternion output denoted q̃. This
resultant quaternion is given by q = [qw, qx, qy, qz].
The training loss is formulated as:

L = | q0 − q̃/||q̃|| |2, (4)

where q0 and q̃ are the groundtruth and predicted
quaternions, respectively. Normalization ensures
that the quaternion is a valid 3D rotation represen-
tation.

4 Experimental Results

The proposed scheme was experimentally verified
by applying it to contemporary benchmark datasets

with overlapping and nonoverlapping image pairs.
Our experimental setup rigorously adhered to the
paradigm established by Cai et al. [7], using iden-
tical datasets and image overlap categories. Utiliz-
ing their provided source code2, to create perspec-
tive views from panoramic images, ensuring that the
input images were the same in both studies, allow-
ing fair comparisons with previous SOTA results and
other contemporary schemes. For that, we also used
the same Residual-Unet backbone network [58] as in
[7]. Section 4.1 details the image datasets we used
and their processing, according to Cai et al. [7], to
derive the training and test datasets. Training de-
tails are given in Section 4.2. We compare with re-
cent SOTA schemes listed in Section 4.3 using the
geodesic error measure used in previous work [7]

E = arccos

(
tr(RTR∗)− 1

2

)
, (5)

where R is the predicted rotation matrix and R∗ is
the groundtruth relative rotation matrix for each im-
age pair. The experimental comparisons are reported
in Section 4.4 and the attention maps are visualized
in Section 2 of the Supplementary Materials to pro-
vide an intuitive interpretation of the cross-attention
scores computed by the Transformer-Encoder. We
studied the cross-dataset generalization properties of
the proposed scheme in Section 4.5, while ablation
studies of the different parameters, design choices and
parameters are reported in Section 4.6.

4.1 Image Datasets and their Process-
ing

We used the following datasets and train/test splits
used in previous works:

InteriorNet [29] is a synthetic data set to under-
stand and map interior scenes. A subset of 10,050
panoramas from 112 different houses was used, where
the images of 82 houses were used for training and
those of 30 houses were used for testing, respectively.

StreetLearn [36] is an outdoor dataset consisting
of approximately 140,000 panoramic views of Pitts-
burgh and Manhattan. We used 56K panoramic

2https://github.com/RuojinCai/ExtremeRotation_code
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views from Manhattan, from which we randomly
chose 1000 panoramic views for testing.

SUN360 [54] is an indoor collection of high-
resolution panoramas that cover a full view of 360◦×
180◦ for a variety of environmental scenes down-
loaded from the Internet. It also provides location
category labels. We used 7K and 2K panoramas for
training and testing, respectively.

As these datasets contain panoramic images, we
generated 200 perspective 128 × 128 images by
randomly cropping 200 different locations in each
panoramic image. This sampling strategy ensures a
consistent distribution of ground-truth image pairs
with pitch resolutions spanning [−45◦, 45◦] and yaw
resolutions encompassing [−180◦, 180◦]. We estimate
only the Yaw and the Pitch angles, presuming a
null roll between paired images. We avoided gen-
erating textureless image pairs, that is, images that
mainly contain ceilings or floors in a house or skies
in an outdoor scenes, by limiting the pitch rang to
[−45◦, 45◦] for the outdoor dataset and [−30◦, 30◦] for
the indoor datasets. There is no overlap between the
train and test datasets. To compare our results with
prior research and to analyze the influence of camera
translation on our rotation estimation approach, we
partitioned the InteriorNet and StreetLearn datasets
into two groups: images with and without camera
translations. The non-translated images were ac-
quired by randomly selecting pairs of cropped im-
ages from a single panorama. In contrast, datasets
that include translations (known as StreetLearn-T
and InteriorNet-T) were generated by randomly se-
lecting pairs of cropped images from different panora-
mas, where translations are less than 3m. However,
our method was not used to estimate these transla-
tions. We evaluated our performance in overlapping
and nonoverlapping pairs and use the setup of Cai
et al. [7] by dividing the datasets into three overlap
classes:

Large, contains highly overlapping pairs up to rel-
ative rotations of 45◦

Small, contains pairs that partially overlap with
relative rotation angles ∈ [45◦, 90◦]

None, contains pairs without overlap with relative
rotations > 90◦.

4.2 Training Details

We use a pre-trained Residual-Unet [58] (same as in
Cai et al. [7]) as a backbone to compute the feature
maps of the two input images (Î1, Î2)∈ Rc×k1×k2 =
R128×32×32. According to Fig. 2, subsequently, these
feature maps are cross-propagated into dedicated de-
coder units, resulting in the refinement of represen-
tations ¯̄I1 and ¯̄I2. The refinements of the represen-
tations ¯̄I1 and ¯̄I2 were reshaped and concatenated
along the axis of the samples to form the tensor
T ∈ R(2·32·32)×128 = R2048×128. T was the input
to the Transformer-Encoder, consisting of l = 2 lay-
ers with ReLU nonlinearity and a dropout of p = 0.1.
Each encoder layer uses h = 4 MHA heads and a hid-
den dimension of Ch = 768. An ablation study of the
Transformer-Encoder parameters is given in Section
4.6. The Transformer-Encoder’s output T̂ is then
fed into a dual-path structure comprising two con-
catenated decoders. The primary decoder receives a
learnt quaternion vector initialized by white Gaus-
sian noise, q̄, as input and the cross-attention T̂ as
a query, and produces ¯̄T , enhancing contextual nu-
ances, while the subsequent decoder gets ¯̄T as an
input and the same empty quaternion vector, q̄ as
a query, and generates ¯̄q, encapsulating pivotal rota-
tional attributes. The two sequential attention-based
decoders use l = 2 layers with h = 2 MHA heads
and a hidden dimension of Ch = 768. Finally, the
MLP regressor that computes the quaternion rep-
resentation for the regression loss in Eq. 4. The
MLP regressor contains two fully connected layers.
Throughout all experiments, the model is optimized
using an Adam optimizer with an initial learning rate
of λ = 5e− 4, with β1 = 0.9, β2 = 0.999, ϵ = 10−10,
and a batch size of 20. Our model is implemented
in PyTorch, it is end-to-end trainable, and all exper-
iments were performed on an 8GB NVIDIA GeForce
GTX 2080 GPU.

4.3 Comparative baselines

In line with Cai et al. [7], we compare our method
with contemporary schemes using the datasets in Sec-
tion 4.1:

A SIFT-based approach [6]. A method for

7



InteriorNet InteriorNet-T SUN360 StreetLearn StreetLearn-T
OverlapMethod Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑) Avg(◦↓) Med(◦↓) 10◦(%↑)

Large

SIFT* [34] 6.09 4.00 84.86 7.78 2.95 55.52 5.46 3.88 93.10 5.84 3.16 91.18 18.86 3.13 22.37
SuperPoint* [13] 5.40 3.53 87.10 5.46 2.79 65.97 4.69 3.18 92.12 6.23 3.61 91.18 6.38 1.79 16.45
Reg6D [59] 9.05 5.90 68.49 17.00 11.95 41.79 16.51 12.43 40.39 11.70 8.87 58.24 36.71 24.79 23.03
DenseCorrVo [7] 1.53 1.10 99.26 2.89 1.10 97.61 1.00 0.94 100.00 1.19 1.02 99.41 9.12 2.91 87.50
8PointViT [43] 0.48 0.40 100.00 2.90 1.83 97.91 - - - 0.62 0.52 100.00 4.08 2.43 90.13
Ours 0.43 0.38 99.65 1.75 0.95 98.8 0.85 0.45 99.95 0.58 0.48 99.31 3.88 1.69 87.20

Small

SIFT* [34] 24.18 8.57 39.73 18.16 10.01 18.52 13.71 6.33 56.77 16.22 7.35 55.81 38.78 13.81 5.68
SuperPoint* [13] 16.72 8.43 21.58 11.61 5.82 11.73 17.63 7.70 26.69 19.29 7.60 24.58 6.80 6.85 0.95
Reg6D [59] 25.71 15.56 33.56 42.93 28.92 23.15 42.55 32.11 9.40 24.77 15.11 30.56 46.61 34.33 13.88
DenseCorrVol [7] 6.45 1.61 95.89 10.24 1.38 89.81 3.09 1.41 98.50 2.32 1.41 98.67 13.04 3.49 84.23
8PointViT [43] 1.84 0.94 99.32 4.48 2.38 96.30 - - - 1.46 1.09 100.00 9.19 3.25 87.7
Ours 1.55 0.872 99.85 4.25 0.777 97.55 2.109 0.831 98.99 1.21 0.718 99.122 7.48 1.8666 88.996

None

SIFT* [34] 109.30 92.86 0.00 93.79 113.86 0.00 127.61 129.07 0.00 83.49 90.00 0.38 85.90 106.84 0.38
SuperPoint* [13] 120.28 120.28 0.00 – – 0.00 149.80 165.24 0.00 – – 0.00 – – 0.00
Reg6D [59] 48.36 32.93 10.82 60.91 51.26 11.14 64.74 56.55 3.77 28.48 18.86 24.39 49.23 35.66 11.86
8PointViT [43] - - - - - - - - - - - - - - -
DenseCorrVol [7] 37.69 3.15 61.97 49.44 4.17 58.36 34.92 4.43 61.39 5.77 1.53 96.41 30.98 3.50 72.69
Ours 35.13 2.814 65.20 45.32 4.05 59.56 32.46 4.19 63.17 5.33 1.20 96.22 28.13 3.25 72.43

Table 1: Relative rotation estimation results. We utilized the InteriorNet, SUN360, and StreetLearn datasets
and show the average and median of geodesic errors. We also present the percentage of image pairs with
relative rotation error below 10◦, for the overlap categories in Section 4.1. The gray numbers indicate errors
exceeding 50%. The asterisk ∗ signifies that the mean and median errors did not lead to pose estimation,
and their calculations are performed only on successful image pairs.

matching SIFT features [34] using RANSAC [17] in
image pairs of the same panorama, and estimating
the relative rotation matrix using Homography equa-
tions or the Essential matrix.

CNN-based methods [13]. Deep learning
schemes that detect and encode local image features
using SuperPointNet [13] and D2-Net [16].

Self-supervised interest point [59]. A scheme
by Zhou et al. [59] (Reg6D) that applies a CNN to
approximate the mappings between various rotation
representations and fits continuous 5D and 6D rota-
tion representations, instead of the commonly used
Euler and quaternion representations.

Extreme rotation estimation [7]. A deep learn-
ing technique to estimate the relative 3D rotation of
image pairs in an extreme setting [7] where the im-
ages have little or no overlap. They proposed a net-
work that automatically learns implicit visual cues
by computing a 4D correlation volume.

Attention-based methods. We also compare to
recent work by Rockwell et al. [43] (8PointVit) us-
ing a Vision Transformer (ViT) to estimate the rela-
tive pose. Although Rockwell et al. achieve competi-
tive results in multiple settings, their approach is less

suited for extreme view changes.

4.4 Experimental comparisons

The results of the comparison of the proposed scheme
with baselines and SOTA schemes are reported in
Table 1. We report the mean and median of the
geodesic error given in Eq. 5 and the percentage of
image pairs whose estimated relative rotation error
was less than 10◦. We compared the accuracy of our
proposed model to the schemes detailed in Section
4.3. The proposed approach is shown to be accurate
for both indoor and outdoor scenes and significantly
outperforms the baseline schemes in all overlap cat-
egories. For nonoverlapping pairs, correspondence-
based methods such as SIFT [6], SuperPointNet [13],
Reg6D [59] and 8PointViT [43] failed to provide any
estimates, as they require feature correspondence.
The DenseCorrVol approach [7] provides accurate
results in extreme cases, but our approach outper-
forms it. Qualitative experimental results are given
in Section 1 of the Supplementary Materials section.
The qualitative results of the rotation estimation are
shown in Fig. 4 for the StreetLearn and SUN360
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Figure 4: Rotation estimation results. The panoramic and cropped groundtruth images are marked by green
and yellow-dot lines. The predicted footprint of one of the cropped images is marked by the red-dot line.
The first row shows the matching results of images with large overlaps. The second and last rows show the
matching of small overlap and non-overlapping images.

datasets, for the large, small and nonoverlapping
cases. We show the full panoramas, the footprints
of the cropped images that were used as inputs for
the proposed scheme and the footprint of the esti-
mated image crop based on the estimated rotation.
In all cases, we archieve high estimation accuracy.

4.5 Cross-Dataset Generalization

Overlap Ours [◦] Cai et al. [7] [◦]

Large 9.55 11.23
Small 16.33 20.87
None 38.48 40.82

Table 2: Cross-dataset generalization. We trained
the models on the Manhattan dataset and tested
them on the London dataset. The average geodesic
error is reported.
The cross-dataset generalization properties of our

approach were evaluated using the Holicity dataset
[60]. The Manhattan dataset was used to train the
models, while the London dataset was used for test-
ing. The test images were divided into three overlap
classes according to Section 4.1. We compared the
generalization of our approach with Cai et al.’s [7].

The results, in Table 2, show that our approach out-
performed Cai et al in all overlap classes.

4.6 Ablation Study

Transformer-Encoder parameters. Table 3 sum-
marizes multiple Transformer-Encoder configurations
for each overlap category. The expressive power of
the Transformer-Encoder depends on the number of
heads and layers. The more are used, the better the
expressive power. However, using an excessive num-
ber might lead to overfitting, and the optimal con-
stellation, in terms of accuracy in Table 3, is given
by h = 4, l = 2. In particular, this constellation is a
sweetspot so that increasing the number of heads or
layers results in reduced accuracy.

Backbone ablation. In Table 4, we examine the
depth of the Residual-Unet [58] backbone by alter-
ing the number of residual blocks it contains. In-
creasing the number of residual blocks enhances the
backbone’s expressive capability, but an excessively
deep architecture may result in overfitting. We found
that using three residual blocks is the optimal choice,
which aligns with our original decision.

3D rotation encoding and training losses.
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Overlap Heads Layers
Rotational error

Avg [◦] Med [◦] 10◦[%]

Large

1 1 1.21 0.97 99.1
4 1 0.82 0.65 99.1
2 2 0.87 0.71 99.12
4 2 0.58 0.48 99.31
4 4 0.65 0.59 99.2

Small

1 1 7.13 3.26 94.99
4 1 6.42 2.46 95.32
2 2 5.44 2.05 96.55
4 2 1.21 0.718 99.122
4 4 4.61 0.98 95.43

None

1 1 7.43 2.88 91.55
4 1 6.15 2.55 92.55
2 2 6.23 3.02 91.35
4 2 5.33 1.20 96.22
4 4 5.78 1.87 95.22

Table 3: Ablation of the Transformer-Encoder pa-
rameters using the StreeLearn dataset. For each
overlap class, there is an optimal configuration that
balances the Transformer-Encoder’s expressive power
and overfitting.

The ablations of different rotation encodings and
their corresponding training losses were evaluated
and are presented in Table 5. The evaluation was per-
formed by applying the Residual-Unet backbone [58]
and a proposed Transformer-Encoder-based cross-
attention method to image pairs from the StreeLearn
dataset with large overlaps. For the discrete formu-
lation, in line with Cai et al. [7], the pitch and yaw
angles were discretized into 360 bins ∈ [−180◦, 180◦],
and a cross-entropy loss was used to train the net-
work. These results were compared to those obtained
using the L2 regression loss, as described in Eq. 4 in
our scheme. The results in Table 5 show that our
L2 regression outperforms the discrete Euler angle
approach proposed by Cai et al. [7].
Architecture Ablations To evaluate the pro-

posed architecture and assess the contribution of each
proposed component, the use of the different Trans-
former Decoders in particular, we conducted a se-
ries of experiments employing various architectural
variations of the proposed architecture introduced
in Section 3 and Fig. 2. The results are shown
in Table 6 and the corresponding architectures are
shown in the Supplementary Materials. In each ex-

Backbone Layers
Rotational error

Avg [◦] Med [◦] 10◦[%]

1

Conv(k=7, s=2, d=64)

2.95 1.53 94.13
1× Residual blocks

Conv(k=3, s=1, d=512)
Conv(k=3, s=1, d=256)

2

Conv(k=7, s=2, d=64)

1.75 1.05 96.13
2× Residual blocks

Conv(k=3, s=1, d=512)
Conv(k=3, s=1, d=256)

3

Conv(k=7, s=2, d=64)

1.21 0.7818 99.122
3 × Residual blocks
Conv(k=3, s=1, d=512)
Conv(k=3, s=1, d=256)

4

Conv(k=7, s=2, d=64)

1.45 0.86 97.12
4× Residual blocks

Conv(k=3, s=1, d=512)
Conv(k=3, s=1, d=256)

Table 4: Backbone Ablation. We evaluate the depth
of the Residual-Unet backbone network [58], used
in our scheme, by changing the number of residual
blocks.

Representation Loss function
Rotational error

Avg [◦] Med [◦] 10◦[%]

Quaternions L2 Regression 1.21 0.78 99.122
Euler angles Cross-Entropy 2.37 1.46 98.13
Euler angles L2 Regression 2.22 1.32 98.99

Table 5: Ablation of 3D rotation encoding and train-
ing losses. We compare the 3D rotations encodings by
Euler angles and quaternions in discrete and contin-
uous domains and the corresponding training losses.
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periment, we used a particular partial configuration
of the proposed Transformer Decoders and evaluated
the resulting estimation error using the StreetLearn
dataset with large overlaps between the input images.
The results in Table 6 show that the proposed con-
figuration outperforms all other configurations. In
particular, configuration #1 shows that using the se-
quential attention-based decoders, TD1 and TD2 im-
proves the accuracy significantly. The cross-decoding
by TD0 provides additional, but not as significant im-
provement.

TD0 TD1 TD2 Avg [◦] Med [◦] 10◦[%]
0 + + + 0.58 0.48 99.3
1 - + + 0.98 0.81 95.15
2 - - - 3.35 2.44 88.16
3 - + - 1.76 1.55 93.12
4 + + - 0.86 0.72 95.64
5 + - - 1.97 1.65 92.82

Table 6: Architectural ablation study. We compare
the estimation accuracy of different configurations of
Transformers Decoders (TDs). The corresponding
architectures are shown in the Supplementary Mate-
rials, and the first configuration is shown in Section
3 and Fig. 2.

5 Conclusion

We present a novel formulation for estimating the rel-
ative rotation between a pair of images. In particular,
we study the estimation of rotations between images
with small and no overlap. We propose an attention-
based approach using a Transformer-Encoder to cal-
culate the cross-attention between image pair embed-
ding maps, which outperforms the previous use of
4D correlation volumes [51, 7] and a decoder-decoder
mechanism to estimate the output quaternion. Our
framework can be trained end-to-end and optimizes a
regression loss. It has been experimentally shown to
outperform previous SOTA schemes [7] on multiple
datasets used in contemporary work. In particular,
for the challenging small and nonoverlapping cases.
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